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Abstract

We study a continuous-time stochastic system of spiking neurons from the perspective of phase
transition and metastability, using mathematical concepts and techniques borrowed from statistical
physics.

The model consists in a �nite or countable set of neurons S, each of them being associated to a
point process modeling its spiking activity. At any time, a neuron either spike at rate one or doesn't
spike depending on whether its membrane potential is positive or null. The propagation of a spike
is done through chemical synapse, meaning that the membrane potential of the spiking neuron is
reset to 0 at the moment of the spike, while the membrane potential of its post-synaptic neurons is
increased by one unit. Moreover, each neuron is subject to a phenomenon known as leakage, which
is represented as a point process of some parameter γ. At any of the atoms of this point process,
the membrane potential of the neuron concerned is immediately reset to 0.

What we obtain is a system of interacting point processes, and as the neurons can only be in
two possible states (active or quiescent, depending on whether the membrane potential is positive
or null), it can be seen as an interacting particles system, i.e. a Markov process taking value in
{0, 1}S .

It has already been proven that this model exhibits a phase transition phenomenon with re-
spect to the leakage parameter when the graph of interaction is the one-dimensional lattice (see
[FGGL18]), that is S = Z with nearest neighbors interaction. Namely, there exists a critical value
γc such that the process dies almost surely when γ > γc, or survives for an in�nite amount of time
if γ < γc. Here we prove that, in this one-dimensional lattice setting, at least in a portion of the
sub-critical region, the process exhibits a metastable behavior. What we mean by this is that the
renormalized time of extinction of a �nite version of the process is asymptotically memory-less with
respect to the number of neurons. We also prove that this result doesn't hold when γ > 1, and
that in this case the renormalized time of extinction is actually asymptotically deterministic. We
also show that the result of phase transition can be extended to the d-dimensional lattice, that is
S = Zd with nearest neighbors interaction. Finally we turn ourselves to the process in which the
graph of interaction is the complete graph (everybody interact with everybody), and we show that
the result of metastability holds for any γ > 0 in this case.

Keywords: Metastability, Phase transition, Biological neural networks stochastic models, Inter-
acting particle systems.
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Resumo

Nessa tese, estudamos um sistema estocástico em tempo continuo de neurônios gerando disparos,
do ponto de vista dos fenômenos de transição de fase e de metaestabilidade, usando conceitos
matemáticos e técnicas emprestado da física estatística.

O modelo consiste em um conjunto S �nito o enumerável de neurônios, cada um associado com
um processo pontual representando os disparos. A cada tempo, um neurônio pode o emitir disparos
com uma intensidade de 1 o não emitir nenhum disparo, dependendo do valor do potencial de
membrana (positivo o zero). A propagação dos disparos ocorre através de sinapses químicas, o que
signi�ca que o potencial de membrana do neurônio disparando perde o seu potencial de membrana,
e que o potencial de membrana dos neurônios post-sinápticos aumenta de uma unidade. Além disso,
o potencial de membrana de cada neurônio e afetado por um fenômeno de natural vazamento, o
qual e representado com um processo pontual de taxa γ. A cada átomo desse processo o neurônio
perde o potencial de membrana dele sem in�uenciar os neurônios post-sinápticos.

O que nos obtemos é um sistema de processos pontuais em interação, e tendo em vista que cada
neurônio so pode ter dois estados diferente (ativado ou em repouso), ele pode ser visto como um
processo de partículas em interação, ou seja um processo Markoviano tendo valores em {0, 1}S .

Foi provado que, no caso no qual o grafo de interação é uma linha, ou seja S = Z com interação
de tipo vizinho mais próximo (veja [FGGL18]), esse modelo está sujeito a uma transição de fase em
relação ao parametro γ. Isto é, existe um valor critico γc tal que o processo morre quase certamente
quando γ > γc, o sobrevive por um tempo in�nito quando γ < γc. Nessa tese nos mostramos que, no
caso em qual o grafo de interação é a linha, pelo menos numa porcão da região subcrítica, o processo
apresenta um comportamento metaestável. Isso signi�ca que o tempo de extinção renormalizado
de uma versão �nita do processo é assimptoticamente sem memoria em relação ao numero de
neurônios. Nos provamos também que não é o caso quando γ > 1, e que na verdade o tempo de
extinção renormalizado e assimptoticamente determinístico nesse caso. Nos generalizamos também
o resultado de transição de fase para o caso S = Zd com interação de tipo vizinhos mais próximos.
Em �m, nos consideramos o processo no qual o grafo de interação é o grafo completo (todo mundo
interage com todo mundo), e nos mostramos que nesse caso o resultado de metaestabilidade vale
para todo γ > 0.

Palavras-chave: Metaestabilidade, Transição de fase, Sistemas de partículas em interação, Mod-
elos estocásticos de redes de neurônios biológicos.
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Yn
D−→

n→∞
Y. The sequence (Yn)n≥0 converges in distribution toward Y .

Yn
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n→∞
Y. The sequence (Yn)n≥0 converges in probability toward Y .

E (1) An exponentially distributed random variable of mean 1.
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Chapter 1

Introduction

1.1 Biological neural networks

Biological neural systems are networks containing a typically huge number of compo-
nents, the neurons. A neuron is a cell whose membrane includes voltage-gated ionic channels
that allow �uctuation of the concentrations of ions inside and outside of the cell body, creat-
ing a di�erence of potential called the membrane potential . The evolution of the membrane
potential of a neuron over time is punctuated by sudden depolarizations, called action po-
tentials or spikes, which tend to happen when the membrane potential is high enough. These
spikes are propagated in the network via chemical synapses. Indeed after the occurrence of a
spike, neurotransmitters are released into the synaptic clefts between the neuron that emit-
ted the spike and its postsynaptic neurons, leading to an increase or a decrease in membrane
potential for these postsynaptic neurons depending on whether the synapse is excitatory
or inhibitory. In the excitatory case, a spike of the presynaptic neuron thus results in an
increase of the spiking probability for the postsynaptic neurons. After a spike has occurred,
the membrane potential of the neuron that just spiked is always reset to the same resting
value, inducing a phenomenon of memory-loss: for a given neuron, the previous spikes of its
presynaptic neurons has no in�uence anymore once it has spiked itself. Moreover, in between
spikes the membrane potential tends to decrease as it is a�ected by the natural di�usion
of ions that occurs through the membrane when some equilibrium has not been reach in
the cell, a phenomenon known as leakage. It induces a smoother memory-loss e�ect, due to
the fact that if a presynaptic spike has occurred a long time ago, even if the postsynaptic
neuron has not spiked up to the current time, the resulting increase in membrane potential
will eventually be small or even null. We refer to [GK77] for a detailed account on these
subjects.

The mathematical modeling of biological neurons and biological neural networks has now
a pretty long history, starting in 1907 with the classical integrate-and-�re model proposed
by the french neuroscientist Louis Lapicque, which model the membrane potential of a single
neuron by means of a simple di�erential equation. In 1952, Hodgkin and Huxley proposed the
so-called Hogkin-Huxley model, which describes in greater details the membrane potential
dynamic using a set of nonlinear di�erential equations. A wide variety of improvements or
alternative models have been then introduced using deterministic models mostly based on
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di�erential equations.

Then, as more evidence arose during the second half of the twentieth century that
biological neural networks behave in an inherently stochastic manner, and likely as a result
of the apparition and di�usion of the modern theory of probability as well, stochastic models
started to be increasingly considered. We refer the reader to [RD10] for a recent review
on the neuroscienti�c aspects of this matter. One of the most relevant class of stochastic
models in continuous-time is the one that make use of point processes . It is indeed now
well accepted that spikes are the unitary elements by which biological neural networks
encode information and transmit signals, so that in order to understand how the brain
work functionally, it is relevant to focus on these spikes understood as punctual events.
Some example of point-processes used in theoretical neuroscience are Hawkes processes
[HAW71, CCMDRB15, CSK88, HRBR15] and Wold processes [KV01].

The model we consider in this thesis takes it roots in [GL13]. This last article introduced
a stochastic model now known as the Galves-Löcherbach model in the literature, or simply
GL model. It was originally a discrete time stochastic process with an in�nite number of
interacting components, where each neuron can be in state 1 or 0 at any time t ∈ N,
depending on whether it spikes or not at this time. In this model we have a countable set
of neurons I, and if Xi(t) denotes the state of neuron i ∈ I at time t, then the probability
for a a given neuron to be spiking at time t ∈ N is given by

P (Xi(t) = 1|Ft−1) = φi

∑
j∈I

Wj→i

t−1∑
s=Lit

gj(t− s)Xs(j), t− Lit

 ,

where Wj→i denotes the synaptic weight describing the in�uence of neuron j on neuron i,
gj is the function modeling the leakage, Lit is the time of the last spike a�ecting neuron i
up to time t, Ft−1 is the standard �ltration associated to the process up to time t, and
φi : R× N→ [0, 1] is an activation function associated to neuron i.

This model is informally speaking a stochastic version of the leaky integrate and �re
model. Since this original paper, other versions of this model has been studied, see for
example [GEP19, MGLP15, DO14, FL16]. We refer to [GL15] for a general review.

The model we consider in this thesis is both a simpli�cation and an extension of this
original model. It was introduced in [FGGL18], and it is a continuous-time model. For each
neuron, the spiking times are represented by a point process. The leakage, unlike in the
original model, occurs at discrete times and is represented by a point process as well. This
is mathematically convenient as it allows us to see our process as an interacting particle
system (see [LIG85]), and to prove results that we believe are out of reach in the original
model. At any of the leak times the membrane potential is reset to the resting value, which is
0 by convention. Moreover, like in the original model, the membrane potential of any given
neuron is also reset to 0 whenever this neuron spikes. This implies that the time evolution
of each single neuron has a memory of variable length, which is an interesting feature both
from a mathematical and a biological point of view. In the original setting considered in
[FGGL18] there is a countably in�nite number of neurons, which is not unreasonable given
that the human brain has a number of neurons of the order of 1011. In this thesis we will
consider both �nite and in�nite systems. Moreover this model assume that all the neurons
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are excitatory with respect to their postsynaptic neurons, with the same synaptic weight,
conventionally �xed to 1. We give a formal de�nition of the model in the next section.

1.2 De�nition of the model

The model considered in this work is as follows. S is a �nite or countable set representing
the neurons, and to each i ∈ S is associated a set Vi of presynaptic neurons. If you consider
the elements of S as vertices, and draw and edge from i to j whenever i ∈ Vj , that is if
you de�ne E = {(i, j) : i ∈ Vj}, then you obtain the graph of the network G = (S,E).
Each neuron i has a membrane potential evolving over time, represented by a stochastic
process which takes its values in the set N of non-negative integers and which is denoted
(Xi(t))t≥0. Moreover each neuron is also associated with a Poisson process (N †i (t))t≥0 of
some parameter γ, representing the leak times. At any of these leak times the membrane
potential of the neuron concerned is reset to 0. Finally an other point process (Ni(t))t≥0

representing the spiking times is also associated to each neuron, which rate at time t is given
by φ(Xi(t)), φ being some function called the activation function. When a neuron spikes
its membrane potential is reset to 0 and the membrane potential of all of its postsynaptic
neurons is increased by one (that is the neurons of the set {j : i ∈ Vj}). All the point
processes involved are assumed to be mutually independent. More formally, beside asking
that (N †i (t))t≥0 be a Poisson process of some parameter γ, this is the same as saying that
(Ni(t))t≥0 is the point process characterized by the following equations

E(Ni(t)−Ni(s)|Fs) =

∫ t

s
E(φ(Xi(u))|Fs)du (1.1)

where

Xi(t) =
∑
j∈Vi

∫
]Li(t),t[

dNj(s), (1.2)

Li(t) being the time of the last event a�ecting neuron i before time t, that is,

Li(t)
def
= sup

{
s ≤ t : Ni({s}) = 1 or N †i ({s}) = 1

}
. (1.3)

(Ft)t≥0 is the standard �ltration for the point processes involved here, that is the �ltration
which at any time t ≥ 0 is equal to the σ-algebra generated by the family {Ni(s), N

†
i (s), s ≤

t, i ∈ S}.
In the present work the function φ will always be the hard-threshold function de�ned

for any x ∈ R by φ(x) = 1x>0. For any �xed t ≥ 0 and i ∈ S the quantity of interest is
then given by 1Xi(t)>0, as it corresponds to the in�nitesimal spiking rate of neuron i at
time t. Depending on whether 1Xi(t)>0 is equal to 1 or 0 we will say that neuron i is active
or quiescent respectively. The dynamic described in the �rst paragraph of this section can
then be reformulated as follows. Whenever a spike occurs, the neuron that spiked becomes
quiescent, as can be seen from equations (1.3) and (1.2), while its postsynaptic neurons
become active if they weren't already, as can be seen from equation (1.2). The choice of
the hard-threshold for the function φ has however no consequence on the leak times, which
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e�ect of getting any active neuron to the quiescent state result from equations (1.3) and
(1.2). If for any i ∈ S and t ≥ 0 we write ηi(t) = 1Xi(t)>0, and η(t) = (ηj(t))j∈S , then the
resulting process (η(t))t≥0 is an interacting particle system, that is, a Markovian process
taking value in {0, 1}S (see [LIG85]). His in�nitesimal generator (see [FGGL18]) is given by

L f(η) = γ
∑
i∈S

(
f(π†i (η))− f(η)

)
+
∑
i∈S

ηi

(
f(πi(η))− f(η)

)
, (1.4)

where f : {0, 1}S 7→ R is a cylinder function1, and the π†i 's and πi's are maps from {0, 1}S
to {0, 1}S de�ned for any i ∈ S as follows:

(
π†i (η)

)
j

=

{
0 if j = i,

ηj otherwise,

and

(
πi(η)

)
j

=


0 if j = i,

max(ηi, ηj) if i ∈ Vj ,
ηj otherwise.

The π†i 's correspond to the leakage e�ect mentioned above, and the πi's correspond to
the spikes. Of course the graph of interaction needs to satisfy some conditions of regularity
for this in�nitesimal generator to even make sense, but the instantiations that we consider in
this article are simple enough to trivially satisfy these conditions. A simple way of reading
the generator above is the following. Whenever a neuron is active, it is associated with
two independent exponential random clocks of parameter 1 and γ, and it spikes or leaks
respectively depending on which one rings �rst.

1.3 Phase transition and metastability in biological neural

networks

Three crucial and interconnected areas of research in the study of biological neural net-
works are the question of phase transition, criticality and metastability. See [WER07] for
a global neuroscienti�c survey on the subject. These concept originally come from physics,
and speci�cally from statistical physics and particle physics. The expression of �phase tran-
sition" refers to the property of a complex system, typically a dynamical system or, in our
case, a stochastic process, to present two or more qualitatively di�erent behaviors depending
on the speci�c values of the parameters that are chosen. In a stochastic context it typically
means that a process suddenly changes from one invariant measure to another as you run
through the parameter space. It was shown for example in [FGGL18] that the stochastic
process de�ned in the previous section is subject to a phase transition with respect to the
leakage parameter γ, when the graph G is the one-dimensional lattice Z with nearest neigh-

1A cylinder function is a function on {0, 1}S which depends only on a �nite number of sites in S.
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bor interaction. Namely, there exists a value γc such that the process continues spiking
in�nitely many time with positive probability if γ < γc, or stop spiking almost surely if
γ > γc.

When a system is subject to a phase transition, the value at which the shift is made
is then said to be a critical value. These critical values are of primary interest as it has
been proposed in the literature that in the brain, as well as in other physical systems, the
information transmission is maximized at the critical values (see [BAK96, BP03]), while
some other authors argue that it might be maximized for slightly super-critical or slightly
sub-critical values (see [CGL17]).

The concept of metastability on the other hand can be seen as some kind of dynamical
phase transition. Ranging from avalanche to supercooling water and energetic states of
atomic nucleus, the adjective �metastable� is used in various �elds of knowledge to qualify a
state (or a collection of states) which is seemingly stable in the system in which it appears,
but such that a tiny perturbation can push the system toward an even more stable state.
By extension we often say that the system itself is metastable or subject to metastability,
which is the meaning in which the expression will be used mostly in this thesis.

In statistical physics, a metastable dynamic evolves in a pseudo-stationary manner for
an unpredictably long time, before falling into the actual equilibrium because of an in�nites-
imally rare but macroscopically unavoidable deviation from this pseudo-stationary phase.
The perturbation here is statistical and inherent to the system, or endogenous, as it consists
in the occurrence of a rare event caused by the dynamic of the system itself. This concept
has now a long history in statistical physics as well as in probability theory. In a seminal
paper (see [LP71]) O. Penrose and J. L. Lebowitz proposed the following characterization
for a metastable thermodynamic state :

1. only one thermodynamic phase is present,

2. a system that starts in this state is likely to take a long time to get out,

3. once the system has gotten out, it is unlikely to return.

The �rst and third points will be easily treated in our model as we will consider �nite
systems in which the spiking activity will stop almost surely, so that there will be only one
invariant measure (one phase), which is the one putting the whole mass on the state where
all the neurons have a null membrane potential, which is a trap for the system. About ten
years latter, M. Cassandro, A. Galves, E. Olivieri and M. E. Vares introduced in [CGOV84] a
re�nement of the second point, as they realized that a crucial characteristic of a wide variety
of metastable stochastic dynamics is not only that the exit time from the metastable state
is long, but that it is also in some sense unpredictable, which translate mathematically by
saying that it is exponentially distributed (asymptotically). The reason for this is that the
exponential distribution is characterized by the memory-less property: knowing that the
system survived up to time t gives you no information about what should happen next.
From that point this property has been studied in a wide variety of stochastic dynamics.
See for example [SCH85], [MOU93] or [FMNS15] (as a non-exhaustive list of references).
Since then alternative approaches has also been developed and we refer to [OV05] for a
complete review.
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Moreover the concept of metastability has become increasingly important in the neuro-
scienti�c literature during the last decades. It usually refers to the brain ability to switch pe-
riodically and spontaneously between di�erent functional networks (see for example [DKJR17]),
and it is considered by many to be one of the fundamental tools the brain has to its dis-
position to process information coming from the noisy, complex and constantly changing
environment in which living beings usually evolve.

One of the �rst work to highlight such phenomenon is maybe the article written by
J.M. Fuster in 1973 [FUS73]. It relates an experiment involving recordings of the neuronal
activity in the prefrontal cortex of adult monkeys via a set of microelectrodes during a
delayed-response test. Schematically the experiment is as follows: an adult male monkey
(macaca mulatta) is placed in front of a setting involving two food wells protected by a
window, one of the food well being empty and the other one containing a piece of apple.
In the �rst period, called the �cue period", which last 7 seconds, the setting is simply
presented to the monkey and, just before the end of this period, the two wells are covered
by two pieces of wood. The window is them covered in order to prevent the monkey from
seeing the setting, and the second period, called the �delay period", starts. After a duration
of 18 seconds the delay period ends, the window is uncovered and the animal is given the
choice of one of the two objects, which he can now accesses through unlocked doors below
the screen. Microelectrodes are set in various places of the prefrontal cortex of the monkey,
and the spiking activity during the three periods are retrieved in the form of spike trains.
After that, Fuster was able to classify all unitary recordings (328 in total) into six categories
of neuronal responses. The two most interesting categories for us are the one he called type
C and type D. They di�er by the fact that type C presents an increased activity during the
cue period while type D presents an inhibited activity during the same period, but more
interestingly they resemble each other as they both exhibit a sustained activity during all
the delay period, signi�cantly higher than the baseline activity observed between successive
experiments, which only resolves at the end of this delay period. Moreover, in a second
experiment in which the monkeys were purposely distracted by visual and auditory stimuli
during the delay period, these type C and type D responses were shown to be the ones
that are the most intensively impacted by these perturbations, giving evidences that these
are the types of neuronal responses that are the most likely to be linked with short-term
memory. While the expression �metastability� is never used in this paper as the subject
was not so widely studied at that time, this kind of phenomenon is clearly reminiscent of
metastability.

On a higher time scale and on a higher cognitive level, it is easy to think of various
phenomenons which�even if they are only loosely related to the rigorously characterized
kind of metastability this thesis is concerned with�are evocative of the phenomenon of
metastability. One of them for example is the �eureka e�ect�, which refers to the common
experience in which one suddenly come to understand a concept or a problem that was
previously incomprehensible for a long time. There is a plethora of examples of such events
in everyone's life as well as in the history of scienti�c discoveries, starting with a well-
known (but �ctional) story about Archimedes (the french mathematician and polymath
Henri Poincaré is also known to have reported such experiences in a famous conference
entitled �L'invention mathématiques� see [POI08]). Such events, in which an individual
goes from a state of cognitive confusion to a state of sudden and unexpected comprehension,
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Figure 1.1: The �gure showing the di�erent type of neuronal responses in the original Fuster's
article.

are reminiscent of a dynamical phase transition, i.e. of metastability, even if it is only on
a metaphorical level. Other events of this type are for example the occurrence of some
mental diseases, such as schizophrenia, which are known to be dormant for years, and to
usually emerge suddenly after a psychotic breakdown either in a seemingly random fashion
or triggered by a disruptive event such as the use of some drug, or a perturbation of the
environment of the individual.

All this being said, it seems that we lack a formal and rigorous framework to address the
subject, which is usually considered in neuroscience from an experimental and macroscopic
perspective. The present work can be seen as an attempt to �ll this gap. We propose
ourselves to address the subject from the statistical physics point of view mentioned above,
focusing on the asymptotic law of the time of extinction of �nite versions of the system
of interacting neurons de�ned in the previous section. As can be seen from simulations
(see Figure 1.2 and Figure 1.3), for the version of the system in which the graph G is the
one dimensional lattice with nearest neighbors interaction (i.e. the instantiation studied in
[FGGL18]), the system apparently presents a metastable behavior for small values of the
parameter γ, while it seems to be highly non-metastable for high values of γ. The result
of a simulation is nonetheless not a proof, and the purpose of this thesis is to study this
model by giving mathematical proofs. This work is to the best of our knowledge the �rst
one to address the problem of metastability in biological neural networks in a well-de�ned
mathematical framework, by means of rigorous proofs.
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Figure 1.2: Simulation of the model with γ = 2 for a system with 100 neurons. On the top left �gure
the histogram of the renormalized time of extinction is plotted. The histogram itself is normalized so
that the area under the curve is equal to one. On the top right �gure, the survival function is plotted
(in blue). The red curve is the graph of t 7→ e−t in both plot. Both are constructed on the same data
set, which consists on 3000 simulation of the process. One can observe on the histogram and the
survival function that the data are not exponentially distributed at all, instead the histogram seems
to have its values concentrated around 1. On the bottom �gure a typical trajectory of the process is
plotted. One can observe that the number of active neurons constantly decreases and rapidly reaches
0. No metastability can be seen in these �gures.
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Figure 1.3: Simulation of the model with γ = 0.35 for a system with 100 neurons. On the top
left �gure the histogram of the renormalized time of extinction is plotted. The histogram itself is
normalized so that the area under the curve is equal to one. On the top right �gure, the survival
function is plotted (in blue). The red curve is the graph of t 7→ e−t in both plot. Both are constructed
on the same data set, which consists on 3000 simulations of the process. One can observe that
the data are well approximated by an exponential distribution, as a matter of fact, the survival
function is almost indistinguishable from the exponential function. On the bottom �gure a typical
trajectory of the process is plotted. One can observe that after a rapid decrease the number of active
neurons stabilizes in pseudo-stationary state and oscillates before �nally dying because of a sequence
of abnormally close leaks. This behavior is typical of a metastable dynamic.

1.4 Results presented in this thesis

Most of the work of this thesis is concerned with the time of extinction of �nite versions
of the system de�ned above, as we consider the asymptotic distribution of these time of
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extinction to be the signature of the metastability or non-metastability of the systems
considered, as explained in the previous section.

In Chapter 2, we present the result of phase transition proven in [FGGL18] in the one-
dimensional lattice setting, and we show that it can be generalized to the process de�ned
on the lattice of any dimension. In Chapter 3 we study the process in the one-dimensional
lattice setting of [FGGL18] and we prove that, when there is �nitely many neurons, its time
of extinction is asymptotically memory-less when γ is taken su�ciently small. In order to
build the proof of this result we obtain various intermediary results related to the invariant
measure of the in�nite process. The material of this chapter has been published in Journal
of Statistical Physics. In Chapter 4 we show that, in the one-dimensional lattice setting, the
result of metastability doesn't hold when γ is taken big enough. In fact in this case, the time
of extinction is asymptotically deterministic. In Chapter 5 we turn ourselves to the process
de�ned on the complete graph, and prove that in this case the result of metastability holds
for any γ > 0. The material of these two last chapters has been accepted for publication in
Stochastic Processes and their Applications. Finally we conclude in Chapter 6 and we draw
possible future lines of research.



Chapter 2

Phase transition in the lattice

2.1 Phase transition in the one-dimensional lattice and gen-

eralization to the d-dimensional lattice

The �rst result obtained on our model is the result of phase transition that was proven
in [FGGL18]. In this last paper, the process considered is the process de�ned on the in�nite
one-dimensional lattice, that is the process de�ned as in Section 1.2 of the introduction
when we assume the following.

Assumption 2.1.1 Let S = Z and for all i ∈ S, Vi = {i− 1, i+ 1}.

In this process, the neurons are indexed on the integers and each neuron has only two
presynaptic neurons, which are his immediate neighbors on the left and on the right. Notice
that while the graph of interaction was thought as a directed graph in the de�nition of
Section 1.2, in this speci�c case if j ∈ Vi then i ∈ Vj as well, so that the graph is actually
undirected. This will be the case for all the graphs studied in this thesis.

It was proven in [FGGL18] that this instantiation of the process is subject to a phase
transition with respect to the leakage parameter γ. More precisely, the following theorem
was proven.

Theorem 2.1.2 Under Assumption 2.1.1 and assuming that Xi(0) ≥ 1 for all i ∈ S,
there exists a critical value γc for the parameter γ, with 0 < γc <∞, such that for any i ∈ S

P
(
Ni([0,∞[) <∞

)
= 1 if γ > γc

and

P
(
Ni([0,∞[) =∞

)
> 0 if γ < γc.

In words there exists a critical value γc that is such that each neuron in the system
continues spiking in�nitely often with positive probability when γ is below it, or stops
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spiking once for all after some time when γ is above it. The last sentence can be rephrased
saying that for γ > γc all neurons become quiescent almost surely as the time goes to in�nity
while for γ < γc every neuron stays in�nitely often active with positive probability.

In this chapter we show that the result of phase transition in the one dimensional lattice
process can be generalized to the multi-dimensional process. Let d ≥ 1 be some integer. In
the following we consider the process de�ned on the in�nite d-dimensional lattice, that is
the process de�ned as in Section 1.2 of the introduction when we assume the following.

Assumption 2.1.3 S = Zd and for all i ∈ S, Vi = {j ∈ Zd : ‖i− j‖d = 1}, where ‖ • ‖d
is the d-dimensional norm de�ned for any i ∈ Zd by

‖i‖d
def
=

d∑
k=1

|ik|.

Notice that if d = 1 Assumption 2.1.3 above is simply Assumption 2.1.1. For any i ∈ Z
and t ≥ 0 we write ηi(t) = 1Xi(t)>0, and η(t) = (ηj(t))j∈S . The process (η(t))t≥0 is a Markov

process taking value in {0, 1}Zd . The generator of this process is given by

L df(η) = γ
∑
i∈Zd

(
f(π†,di (η))− f(η)

)
+
∑
i∈Zd

ηi

(
f(πdi (η))− f(η)

)
, (2.1)

where the π†,di 's and πdi 's are maps from {0, 1}Zd to {0, 1}Zd de�ned for any i ∈ Zd as follows:

(
π†,di (η)

)
j

=

{
0 if j = i,

ηj otherwise,
(2.2)

and

(
πdi (η)

)
j

=


0 if j = i,

max(ηi, ηj) if ‖i− j‖d = 1,

ηj otherwise.

(2.3)

For any η ∈ {0, 1}Zd we will write (ηη(t)t≥0) for the process having generator (2.1) and
initial state η. By convention when no indication is given the initial state of the process is
the state where all neurons are actives.

The existence and uniqueness of this process are guaranteed by standard theory in
interacting particle systems (see Theorem A.0.5 in appendix, or Theorem 3.9 in [LIG85]).
This is essentially a consequence of the fact that the range of the interaction is �nite as
well as the translation invariance of the process (the local dynamic doesn't depend on the
neuron we are looking at).

We are aimed to prove the following result

Theorem 2.1.4 Under Assumption 2.1.3 and assuming that Xi(0) ≥ 1 for all i ∈ Zd,
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there exists a critical value γ
(d)
c for the parameter γ, with 0 < γ

(d)
c < ∞, such that for any

i ∈ Zd

P
(
Ni([0,∞[) <∞

)
= 1 if γ > γ(d)

c

and

P
(
Ni([0,∞[) =∞

)
> 0 if γ < γ(d)

c .

2.2 The d-dimensional dual process

An important tool that we are going to use in order to reach our purpose is the theory of
duality. The existence of a dual process was already crucial in the proof of phase transition
for the one-dimensional setting studied in [FGGL18], and it will not only be useful here
to generalize the phase transition result to the dimension d but also to prove the result
of metastability of the next chapter. The theory of duality thus play an important role in
half of this thesis, and a brief reminder of its main results is given in Appendix A. A more
detailed introduction to the subject can be found in [BG77].

As an application of Theorem A.0.5 Our process (ηt)t≥0 admits a dual. This is a conse-
quence of the important fact that the process is additive in the sense that for any i ∈ Zd
and A ∈P(Zd) (here P(Zd) is only an alternative way to represent the state space1) the
following holds

π†,di (A) =
⋃
j∈A

π†,di ({j}),

and

πdi (A) =
⋃
j∈A

πdi ({j}).

The dual process is denoted (η̃t)t≥0. It is the process taking value in {0, 1}Zd with the
following in�nitesimal generator

L̃ dg(F ) = γ
∑
i∈Z

(
g(π̃†,di (F ))− g(F )

)
+
∑
i∈Z

ξi

(
g(π̃di (F ))− g(F )

)
, (2.4)

where g is a cylindrical function and F ∈P(Zd). The π̃†,di 's and π̃di 's are de�ned as follows:

1Indeed we can identify the state space {0, 1}Z
d

to the state space P(Zd), the set of all subsets of Zd,
as any element η of {0, 1}Z

d

can be bijectively mapped to an element A of P(Zd)�via the obvious relation

A = {i ∈ Z such that ηi = 1}�so that we can indi�erently use both ways. In practice we will use both of

them without explicitly specifying it each time. By convention we will generally use letters such as η, ξ and

ζ for elements of {0, 1}Z
d

and letters such as A, B and C for elements of P(Zd). What we mean should be

clear from the context.
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π̃†,di (F ) = F \ {i}

for all F ∈P(Zd) and i ∈ Zd, and

π̃di ({j}) =


∅ if j = i,

{i, j} if ‖i− j‖d = 1,

{j} otherwise,

for all i ∈ Zd and j ∈ Zd, the map for bigger sets F ∈P(Zd) being given for all i ∈ Zd by

π̃di (F ) =
⋃
j∈F

π̃di ({j}).

We adopt the same convention regarding the notation of the initial state of the process
as for the original process. The important result that links the original process with its dual
is the following

Theorem 2.2.1 For any A,B ∈P(Zd) such that at least one of them is �nite, and for
any t ≥ 0 we have

P
(
ηA(t) ∩B 6= ∅

)
= P

(
η̃B(t) ∩A 6= ∅

)
.

Intuitively this last theorem means that the dual process essentially behave like the
initial process with the time reversed.

Let 0d = (0, . . . 0) ∈ Zd denotes the origin of the lattice Zd. We de�ne the time of
extinction of this dual process

κ̃0d = inf{t ≥ 0 : η̃0d(t) = ∅}.2

We have the following proposition, which we will use in the proof of the following section.

Proposition 2.2.2 If γ > 2d+ 1, then P(κ̃0d =∞) = 0.

Proof: This is proven by a coupling of (|η̃0d(t)|)t≥0 with a branching process, that is to
say the joint construction of both processes on the same probability space.

First we construct an intermediate process (Yt)t≥0. The coupling is done as follows. At
time 0, Y0 = 1. For any t ≥ 0 we de�ne the set N (t) of neighbors of η̃0d(t), including η̃0d(t)
itself, that is

N (t)
def
= {j ∈ Zd : ‖j − i‖d ≤ 1 for some i ∈ η̃0d(t)}.

2Here and in the following, as an abuse of notation, the initial con�guration is denoted 0d while strictly
speaking we should write {0d}. This kind of abuse of notation will be used repeatedly throughout this thesis

without further remark.
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Whenever a transformation π̃†,di occurs with i ∈ η̃0d(t), Yt decreases by one. If Yt >
|η̃0d(t)| for some t ≥ 0 then additionally (Yt)t≥0 also decreases by one at rate Yt − |η̃0d(t)|.
Whenever a transformation π̃di occurs with i ∈ N (t), Yt increases by one. When such a
transformation occurs, |η̃0d(t)| can either increase by one, stay the same, of decrease by one,
depending on the con�guration of the process at that time, so that with this coupling we
obviously have

|η̃0d(t)| ≤ Yt for any t ≥ 0.

Moreover the increase rate of Yt at any time t ≥ 0 is equal to |N (t)|, which is maximal
when the con�guration of η̃0d(t) is such that every element is isolated ; when this is the
case, conditioned on |η̃0d(t)| = n, we have |N (t)| = n(2d+ 1). Therefore, by the inequality
above the increase rate of Yt is always less than Yt(2d + 1), so that it is easy to see that
(Yt)t≥0 can be coupled with a continuous time branching process (Zt)t≥0 having birth rate
2d+ 1 and death rate γ (see Section B.3 in the Appendix for details) in such a way that

Yt ≤ Zt for any t ≥ 0.

Moreover, by Proposition B.3.1 in Appendix B, we have

E (Zt) = e−(γ−(2d+1))t. (2.5)

Therefore, by Markov inequality

P
(
η̃0d(t) 6= ∅

)
≤ P (Zt ≥ 1) ≤ e−(γ−(2d+1))t,

and when γ > 2d+ 1 the right-hand side converges to 0 when t goes to ∞, which ends
the proof. �

2.3 Proof of Theorem 2.1.4

If d = 1, then Theorem 2.1.4 is Theorem 2.1.2, which has already been proven in
[FGGL18], so that we can assume d ≥ 2.

Moreover it is su�cient to consider the case i = 0d. Notice that P(N0d([0,∞[) = ∞)
is a non-increasing function of γ (if not obvious, this results from similar reasoning as the
proof of Lemma 5 in [FGGL18]), so that it su�ces to �nd two values of γ such that the
probability is equal to 0 for the �rst value and strictly bigger than 0 for the second value.

We consider the sub-critical case �rst. The result follows directly from the one-dimensional
phase transition result. Indeed Zd contains a copy of Z, so that by an obvious coupling we
have that

P
(
N0d([0,∞[) =∞

)
≥ P

(
N0([0,∞[) =∞

)
,

where in the right-hand side N0([0,∞[) denotes the number of spikes of neuron 0 for the
one-dimensional process (that is the process under Assumption 2.1.1) while in the left-hand
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side N0d([0,∞[) denotes the number of spikes of neuron 0d for the d-dimensional process
(that is the process under assumption 2.1.3). It follows that for any γ < γc (where γc is the
critical value for the one-dimensional process), we have

P
(
N0d([0,∞[) =∞

)
> 0,

which ends the proof for the sub-critical part.

For the super-critical part we have by duality that

P(η0d(t) = 1) = P(κ̃0d > t) −→
t→∞

P
(
κ̃0d =∞

)
,

and the limit is equal to 0 if we choose γ > 2d+1 by Proposition 2.2.2. If P(N0d([0,∞[) =
∞) were strictly positive then the limit above could not be 0, so that the proof is over.
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Metastability in the sub-critical

region for the one-dimensional lattice

process

3.1 De�nitions and result

In this chapter we study exclusively the one-dimensional lattice process, that is the
process obtained under Assumption 2.1.1. As stated in the previous chapter, it was proven
in [FGGL18] that this process is subject to a phase transition and possesses a critical value
that we denote γc.

As usual, the key process we are going to work with is the spiking rates process. For any
i ∈ Z and t ≥ 0 we write ξi(t) = 1Xi(t)>0, and ξ(t) = (ξj(t))j∈S . The main object we are
interested in is the resulting process (ξ(t))t≥0. It is the interacting particle system which
dynamic is given by the generator in (1.4), when you replace S by Z and Vi by {i−1, i+1},
that is

L 1f(η) = γ
∑
i∈Z

(
f(π†,1i (ξ))− f(ξ)

)
+
∑
i∈Z

ηi

(
f(π1

i (ξ))− f(ξ)
)
, (3.1)

where the π†,1i 's and π1
i 's are maps from {0, 1}Z to {0, 1}Z de�ned for any i ∈ Z as follows:

(
π†,1i (ξ)

)
j

=

{
0 if j = i,

ηj otherwise,
(3.2)

and

(
π1
i (ξ)

)
j

=


0 if j = i,

max(ηi, ηj) if j ∈ {i− 1, i+ 1},
ηj otherwise.

(3.3)
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lattice process

We adopt the same convention as in the previous chapter regarding the notation for the
initial state. Moreover, for any ξ ∈ {0, 1}Z, we de�ne the extinction time of the process
(ξξ(t))t≥0

τ ξ = inf{t ≥ 0 : ξξ(t)i = 0 for any i ∈ Z},

with the convention that inf ∅ = +∞.

We also consider a �nite version of the process
(
ξ(t)

)
t≥0

, where the neurons aren't
anymore in the in�nite lattice but only in a �nite portion of it. Fix some integer N ≥ 0 and
let SN = J−N,NK (where J−N,NK is a short-hand for Z ∩ [−N,N ]). For any i ∈ SN let
the set VN,i be de�ned by

VN,i =


{i− 1, i+ 1} if i ∈ J−(N − 1), N − 1K,
{N − 1} if i = N,

{−(N − 1)} if i = −N.

We write
(
ξN (t)

)
t≥0

for the �nite version of the lattice process, that is to say the process

taking value in {0, 1}2N+1 which dynamic is given by the generator in (1.4) when you replace
S by SN and Vi by VN,i for any i ∈ SN , that is

L 1
Nf(ξ) = γ

∑
−N≤i≤N

(
f(π†,1N,i(ξ))− f(ξ)

)
+

∑
−N≤i≤N

ηi

(
f(π1

N,i(ξ))− f(ξ)
)
, (3.4)

where the π†,1N,i's and π1
N,i's are maps from {0, 1}2N+1 to {0, 1}2N+1, which de�nition

agree with (3.2) and (3.3) respectively for any i ∈ J−N,NK.

The existence and uniqueness of both the in�nite and the �nite processes are guaranteed
by standard theory in interacting particle systems (see previous chapter).

Let τN denote the time of extinction of this �nite process, that is to say the �rst time
at which all neurons are quiescent. Formally

τN
def
= inf{t ≥ 0 : ξN (t)i = 0 for any i ∈ J−N,NK}.

The purpose of this chapter is to prove one of our main theorems, which is the following.

Theorem 3.1.1 There exists γ′c such that if 0 < γ < γ′c, then we have the following
convergence

τN
E(τN )

D−→
N→∞

E (1).

For this purpose we will need an extensive study of the in�nite process, and speci�cally
of its asymptotic behavior.
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3.2 The graphical construction

Inspired by the graphical construction introduced by Harris in [HAR78] we consider an
alternative de�nition of our process. The reason for introducing this alternative construction
is that it proved itself to be a powerful tool in the �eld of interacting particle systems.
It permits to construct the in�nite process, the �nite process, as well as the semi-in�nite
processes (see next section) on the same probability space, which allows us to use extensively
the technique of coupling�which we already used in the previous chapter�i.e. to construct
the processes in such a way that they satisfy a given relation for every realization (every
point on the probability space), allowing us to obtain inequalities about the probability of
some events involving them (see [THO95] for a review on coupling).

For any i ∈ Z let (N †i (t))t≥0 be the homogeneous Poisson process of rate γ mentioned
in the introduction, and let (N∗i (t))t≥0 be an homogeneous Poisson process of rate 1. Let
(T †i,n)n≥0 and (T ∗i,n)n≥0 be their respective jump times. We also impose that the Poisson
processes are de�ned on the same probability space (Ω,F ,P) and are mutually independent.

Moreover we consider the time-space diagram Z × R+, and for any realization of the
Poisson processes, we do the following:

� for all i ∈ Z and n ∈ N put a �δ" mark at the point (i, T †i,n),

� for all i ∈ Z and n ∈ N put an arrow pointing from (i, T ∗i,n) to (i+1, T ∗i,n) and another
pointing from (i, T ∗i,n) to (i− 1, T ∗i,n).

That way we obtain a random graph G which consists of the time-space diagram Z×R
augmented by the set of �δ" marks and horizontal arrows we just described, and which is
constructed on the underlying probability space (Ω,F ,P).

We call a time segment any subset of Z × R of the form {(i, s), t ≤ s ≤ t′}, for some
i ∈ Z and some t < t′. Moreover, for some i, j ∈ Z and t < t′, and for any realization of the
graph G , we say that there is a path from (i, t) to (j, t′) in G if there is a connected chain
of time segment and arrows leading from (i, t) to (j, t′). We say that it is a valid path if it
satis�es the following constraints:

� it never cross a �δ" mark,

� when moving upward, we never cross the rear side of an arrow.

We write (i, t) −→ (j, t′) when there is a valid path from (i, t) to (j, t′) in G . With this
construction we can easily give the following characterization of our stochastic process. For
any A ∈P(Z), and for any t ≥ 0 :

ξA(t) = {j ∈ Z : (i, 0) −→ (j, t) for some i ∈ A}.1

As a reward for our hard work we immediately obtain the two following results.

1As usual we are identifying the state space {0, 1}Z with the state space P(Z). This convention will now

be used throughout this thesis without further remark.
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Proposition 3.2.1 Let A ⊂ B ⊂ Z, then for any t ≥ 0 we have

ξA(t) ⊂ ξB(t).

Moreover, the process is additive in the following sense

ξA(t) =
⋃
i∈A

ξi(t).

Proof: It follows from the graphical construction. For the �rst part of the proposition it
su�ces to notice that if (i, 0) −→ (j, t) for some i in A and some t ≥ 0 then (j, t) ∈ ξB(t)
as i belongs to B as-well. The second part is simply a reformulation of the de�nition. �

Remark 3.2.2 Proposition 3.2.1 remains obviously true if you replace (ξ(t))t≥0 by the
�nite process (ξN (t))t≥0 or one of the semi-in�nite processes which we introduce in the
next section. Moreover, the second part of the proposition is also a consequence of Theorem
A.0.5 in the Appendix together with the additivity of the maps de�ning the generator of the
process, but we included the result here to give a taste of the simplicity and practicality of
the graphical construction.

3.3 The semi-in�nite processes

In order to prove the result of metastability in which we are interested we need to
introduce restricted versions of the in�nite system of spiking neurons.

For any N ∈ Z, the right semi-in�nite process, which we denote (ξ[N,+∞[(t))t≥0,
is the process taking values in P(JN,+∞J) corresponding to the process we obtain from
(1.4) when the set of neurons is given by S[N,∞[ = JN,+∞J and when the set of presynaptic
neurons for any neuron i ∈ S[N,∞[, is de�ned as

V[N,∞[
i =

{
{i− 1, i+ 1} if i 6= N,

{N + 1} otherwise.

In term of the graphical construction (ξ[N,+∞[(t))t≥0 is the process constructed as
(ξ(t))t≥0, with the random graph G , but using only the δ's and arrows from the sub diagram
JN,+∞J×R+. The left semi-in�nite process (ξ]−∞,N ](t))t≥0 is de�ned in a similar way,
on P(K−∞, NK), considering only δ's and arrows on the sub diagram K−∞, NK× R+. We
adopt the usual convention regarding the notation of the initial state. Notice that all these
processes are constructed on the same probability space (Ω,F ,P), and that we have the
following monotonicity relationships:

∀A ∈P(JN,+∞J), ∀t ≥ 0, ξA[N,+∞[(t) ⊂ ξ
A(t),
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Figure 3.1: A realization of the random graph G . In blue all the possible valid paths starting from
(0, 0). Here the con�guration of the process at time t when the initial con�guration is the singleton
{0} is the set {−4,−2, 1}.

∀A ∈P(K−∞, NK), ∀t ≥ 0, ξA]−∞,N ](t) ⊂ ξ
A(t),

∀A ∈P(J−N,NK), ∀t ≥ 0, ξAN (t) ⊂ ξA(t).

The same way we de�ned an extinction time for the �nite process, for any N ∈ Z
and any initial con�guration A ∈ P(JN,+∞J) (resp. A ∈ P(K−∞, NK)) we de�ne the
extinction time of the right semi-in�nite process (resp. left semi-in�nite process) denoted
τA[N,+∞[ (resp. τ

A
]−∞,N ]).
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3.4 The dual process

3.4.1 Formal de�nition of the dual process

As explained in the previous chapter, the fact that our process is additive has the nice
consequence that it has a dual again we refer to Appendix A for a quick reminder, or to
[HAR76] and [BG77] for an in-depth presentation).

The dual process of our system of spiking neurons is de�ned on the state space P(Z)
of �nite subset of Z and has the following generator (see [FGGL18]):

L̃ 1g(F ) = γ
∑
i∈Z

(
g(π̃†,1i (F ))− g(F )

)
+
∑
i∈Z

ξi

(
g(π̃1

i (F ))− g(F )
)
, (3.5)

where g is a cylindrical function and F ∈ P(Z). The π̃†,1i 's and π̃1
i 's are called the dual

maps and are de�ned as follows:

π̃†,1i (F ) = F \ {i}

for all F ∈P(Z) and i ∈ Z, and

π̃1
i ({j}) =


∅ if j = i,

{i, j} if j ∈ {i− 1, i+ 1},
{j} otherwise,

for all i ∈ Z and j ∈ Z, the map for bigger sets F ∈P(Z) being given for all i ∈ Z by

π̃1
i (F ) =

⋃
j∈F

π̃1
i ({j}).

We write (ξ̃(t))t≥0 for the process with generator (3.5). As well as for the original process
we de�ne, for any A ∈P(Z), the extinction time for the dual-process:

τ̃A = inf{t ≥ 0 : ξ̃A(t) = ∅}.

The crucial point is that the original process and its dual are linked by the duality
property, already given in the previous chapter (Theorem 2.2.1). This property will be
crucial in the following sections of this chapter, where it will often be used in the following
form:

P
(
ξ(t) ∩ {0} 6= ∅

)
= P

(
ξ̃0(t) 6= ∅

)
= P

(
τ̃0 > t

)
. (3.6)
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3.4.2 Graphical construction of the dual process

It is also possible to give a graphical construction for the dual process. Again, for any
i ∈ N and n ∈ N, let's consider two independent homogeneous Poisson processes (Ñ∗i (t))t≥0

and (Ñ †i (t))t≥0 with intensity 1 and γ respectively, and let (T̃ ∗i,n)n≥0 and (T̃ †i,n)n≥0 be their
respective jump times. As previously all the Poisson processes are assumed to be mutually
independent.

We consider the time-space diagram Z × R+, and for any realization of the Poisson
processes, we do the following:

� for all i ∈ Z and n ∈ N put a �δ" mark at the point (i, T̃ †i,n),

� for all i ∈ Z and n ∈ N put an arrow pointing from (i+1, T̃ ∗i,n) to (i, T̃ ∗i,n) and another

pointing from (i− 1, T̃ ∗i,n) to (i, T̃ ∗i,n).

As previously we get a random graph that we denote G̃ . Now we say that a path in G̃
is a dual-valid path if it satis�es the following constraints:

� it never cross a �δ� mark,

� when moving upward, we never cross the tip of an arrow.

We write (i, t)
dual−→ (j, t′) when there is a dual-valid path from (i, t) to (j, t′) in G ′. Then,

for any A ∈P(Z) and for any t ≥ 0, we can write :

ξ̃A(t) = {j ∈ Z : (i, 0)
dual−→ (j, t) for some i ∈ A}.

The same way we de�ned the �nite and semi-in�nite processes in the previous sections,
we de�ne the �nite and semi-in�nite dual processes, using the random graph G̃ , and as
previously we denote them (ξ̃[N,+∞[(t))t≥0, (ξ̃]−∞,N ](t))t≥0 and (ξ̃N (t))t≥0. We de�ne their
extinction times as well, denoted τ̃AN , τ̃

A
[N,+∞[ and τ̃

A
]−∞,N ] for any suitable initial con�gura-

tion A ∈P(Z).

3.5 Asymptotic behavior

3.5.1 Asymptotic behavior of the in�nite processes

The dual process itself presents some kind of phase transition, as stated in the following
theorem (which is Theorem 3 in [FGGL18]).

Theorem 3.5.1 There exists 0 < γc < +∞ such that for all i ∈ Z we have:

P
(
τ̃ i = +∞

)
> 0, if γ < γc,
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Figure 3.2: A realization of the dual random graph G ′. In blue all the possible dual-valid paths
starting from (0, 0). Here the con�guration of the dual process at time t when the initial con�guration
is the singleton {0} is the set {−1, 1, 2}.

and

P
(
τ̃ i = +∞

)
= 0, if γ > γc.

A central problem we need to address is to determine the invariant measures of each
of the di�erent processes we introduced, in the sub-critical regime. Most of this analysis is
done by combining Theorem 3.5.1 and the duality property.

Before going any further we begin by giving a topological structure to the state space,
which will be needed in what follows. We equip {0, 1} with the discrete topology so that
{0, 1}Z can then be equipped with the corresponding product topology. That way {0, 1}Z
is compact by Tychono�'s theorem and metrizable as any distance of the form d(x, y) =∑

i∈Z ai1{x(i)=y(i)} generates the product topology (where (ai)i∈Z is any sequence satisfying∑
i∈Z ai < ∞). The topological space {0, 1}Z is then associated with the corresponding

Borel σ-algebra.

Now let us introduce some order relations on {0, 1}Z and on the set of probability
measures on {0, 1}Z that will be needed in what follows. Given two con�gurations ξ1 and
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ξ2, we will say that ξ1 ≤ ξ2 if for any i ∈ Z we have ξ1
i ≤ ξ2

i . Now, for any continuous
function f on {0, 1}Z, we say that f is increasing if f(ξ1) ≤ f(ξ2) whenever ξ1 ≤ ξ2. We
say that f is decreasing if −f is increasing. Finally, given two probability measures ν1 and
ν2 on {0, 1}Z, we say that ν1 ≤ ν2 whenever the following inequality∫

fdν1 ≤
∫
fdν2

holds for any continuous and increasing function f . One of the reasons behind this de�nition
is that it is a well-known fact that the set of continuous and increasing function on {0, 1}Z
is distribution determining (see Section B.1 in Appendix B), which means that for any
probability measures ν1 and ν2 on {0, 1}Z, if the following equality∫

fdν1 =

∫
fdν2

holds for any continuous and increasing function f then we have ν1 = ν2. In particular this
implies that if ν1 ≤ ν2 and ν1 ≥ ν2 then ν1 = ν2.

The next result�and therefore most of the results that follow�could be proved using
a very general tool called the �basic coupling" (see Theorem 2.4 in Chapter 2 of [LIG85] or
section 7 of [DUR81]), nonetheless we give a somewhat more elementary proof based on the
graphical construction in order to make this work as self-contained as possible.

Proposition 3.5.2 For any 0 ≤ s < t we have the following

P (ξ(s) ∈ • ) ≥ P (ξ(t) ∈ • ) .

Proof: Fix 0 ≤ s < t. Then let ξ be a random variable taking value in {0, 1}Z and having
the same distribution as ξ(t−s). By the �rst part of Proposition 3.2.1 we have ξ(s) ≥ ξξ(s),
so that for any continuous and increasing function f we have f(ξ(s)) ≥ f(ξξ(s)), and taking
the expectation we get E (f(ξ(s))) ≥ E

(
f(ξξ(s))

)
. But by construction ξξ(s) has the same

distribution as ξ(t) so that we end up with

E
(
f(ξ(s))

)
≥ E

(
f(ξ(t))

)
,

which is the same as ∫
fdP(ξ(s) ∈ • ) ≥

∫
fdP(ξ(t) ∈ • ).

�

Remark 3.5.3 To avoid confusion we call the property of Proposition 3.5.2 stochastic

monotonicity, while we will call the �rst property of Proposition 3.2.1 set monotonicity.

From this last proposition we get the following.
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Corollary 3.5.4 For any γ > 0 there exists a probability measure µγ that is invariant
for (ξ(t))t≥0 and that is such that

P
(
ξ(t) ∈ •

)
−→
t→∞

µγ .

The Dirac measure on the �all zero" con�guration, denoted δ∅, is also invariant and we have

P
(
ξ∅(t) ∈ •

)
−→
t→∞

δ∅.

Moreover if ν is any other invariant measure then δ∅ ≤ ν ≤ µγ.

Proof: The fact that the process starting from the �all zero" con�guration converges
weakly to δ∅ is of course entirely trivial as we actually have ξ∅(t) = ∅ for any t ≥ 0. For the
convergence of the process starting from the �all one" con�guration take any continuous and
increasing function f and remember that we showed in the proof of the previous proposition
that t 7→ E

(
f(ξ(t))

)
is a decreasing function. It follows that E

(
f(ξ(t))

)
converges to some

�nite constant when t goes to in�nity (remember that {0, 1}Z is compact). The set of
continuous and increasing functions being distribution determining the result follows.

For the last statement of the proposition suppose we have some invariant measure ν and
write (ξν(t))t≥0 for the process with initial con�guration chosen randomly with respect to
distribution ν. For any t ≥ 0 by set monotonicity we have ξ∅(t) ≤ ξν(t) ≤ ξ(t), so for any
continuous and increasing function f we have

E
(
f(ξ∅(t))

)
≤ E

(
f(ξν(t))

)
≤ E

(
f(ξ(t))

)
,

or equivalently

P
(
ξ∅(t) ∈ •

)
≤ P

(
ξν(t) ∈ •

)
≤ P

(
ξ(t) ∈ •

)
.

The inequality δ∅ ≤ ν ≤ µγ then follows from the convergence results proven above and
from the fact that P

(
ξν(t) ∈ •

)
= ν for any t ≥ 0. �

The asymptotic distribution of the process starting from the �all one" con�guration will
be referred as the upper-invariant measure and the asymptotic distribution of the process
starting from the �all zero" con�guration will be referred as the lower-invariant measure.
The dual process has an upper-invariant measure too, which we denote µ̃γ , and his lower-
invariant measure is also the Dirac δ∅ (to see this it su�ces to verify that all the arguments
used above work for the dual process as well). Moreover the inequality δ∅ ≤ ν ≤ µ̃γ remains
true if ν is an invariant measure for the dual process.

The fact that the upper-invariant and lower-invariant measures are a lower and upper
bound respectively for any invariant measure has the following consequence.

Let de�ne the density of the process (ξ(t))t≥0:

ργ = µγ ({ξ : ξ0 = 1}) .
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As a consequence of Theorem 3.5.1 we have the following result for the density.

Proposition 3.5.5 When γ < γc we have ργ > 0, and therefore µγ 6= δ∅.

Proof: This follows from duality (Equation 3.6) and can be derived as follows

ργ = lim
t→∞

P
(
ξ(t) ∩ {0} 6= ∅

)
= lim

t→∞
P
(
ξ̃0(t) 6= ∅

)
= lim

t→∞
P
(
τ̃0 > t

)
= P

(
τ̃0 =∞

)
,

and P
(
τ̃0 =∞

)
> 0 when γ > γc. �

In order to prove the metastability result we are only interested in the sub-critical regime
so that from now on we will just assume that γ < γc and omit the dependence in γ in the
notation, writing simply µ for µγ , µ̃ for µ̃γ , and ρ for ργ . We have the following result, which
is the equivalent for the dual process of the second part of Proposition 3.5.5.

Proposition 3.5.6 In the sub-critical regime µ̃ 6= δ∅.

Proof: We denote by ξ ≡ 0 the �all zero" con�guration. Then

µ̃(ξ ≡ 0) = lim
t→∞

P
(
ξ̃(t) = ∅

)
= 1− lim

t→∞
P
(
ξ̃(t) 6= ∅

)
≤ 1− lim

t→∞
P
(
ξ̃0(t) 6= ∅

)
= 1− P

(
τ̃0 =∞

)
,

so that µ̃(ξ ≡ 0) < 1. �

To state the lemma below let introduce the following notation: I (resp. Ĩ ) will denote
the set of invariant measures of the process (ξ(t))t≥0 (resp. (ξ̃(t))t≥0). We know, by classical
theory of Markov processes (see for example proposition 1.8 of chapter 1 in [LIG85]) that I
and Ĩ are convex sets, so that we can de�ne Ie and Ĩe the set of extreme points of I and
Ĩ respectively, and we know that I and Ĩ are the convex-hull of Ie and Ĩe respectively
(as a consequence of the Krein-Milman theorem).

Lemma 3.5.7 We have {δ∅, µ} ⊂ Ie and {δ∅, µ̃} ⊂ Ĩe. In words, the upper-invariant
and lower-invariant measures are extremal.
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Proof: We prove the statement for µ. Suppose that there exists ν1 and ν2 in I such that
µ = pν1 + (1 − p)ν2 for some 0 < p < 1. Then Proposition 3.5.4 gives us that µ1 ≤ µ and
µ2 ≤ µ so that for any continuous and monotone function f we have∫

fdν1 ≤
∫
fdµ and

∫
fdν2 ≤

∫
fdµ.

But we also have ∫
fdµ = p

∫
fdν1 + (1− p)

∫
fdν2,

from what if follows that ∫
fdµ =

∫
fdν1 =

∫
fdν2.

�

Using this last lemma it can be shown that not only µ (as well as µ̃) is di�erent from
δ∅ in the sub-critical regime, but it also puts no mass on η ≡ 0. This is the subject of the
following proposition.

Proposition 3.5.8 We have µ (η ≡ 0) = µ̃ (η ≡ 0) = 0 in the sub-critical regime.

Proof: We prove the statement for µ. Regardless of the value of µ (η ≡ 0) we can always
�nd some p ∈ [0, 1] and some probability measure ν satisfying ν(η ≡ 0) = 0 such that

µ = pδ∅ + (1− p)ν.

We know that µ 6= δ∅ so that p has to be di�erent from 1, thus ν need to be invariant
as well. But if p were di�erent from 0 then µ would be a (non-trivial) convex combination
of invariant measures, which would be a contradiction with Lemma 3.5.7. We conclude that
µ = ν. �

Finally, one important result we will need in order to prove metastability is the spatial
ergodicity of the measure µ. It is stated in the following theorem.

Theorem 3.5.9 The measure µ is spatially ergodic in the sense that a sequence of
random variable (Yk)k∈Z taking value in {0, 1} and such that Yk is distributed like µ

(
{ξ :

ξk = • }
)
would satisfy the following

1

n+ 1

n∑
k=0

Yk
a.s.−→
n→∞

ρ.

Proof: Using a similar coupling as in the proof of Proposition 3.5.2 we can construct an
in�nite sequence of random variables in {0, 1}Z, denoted

(
ξk
)
k∈N∪{∞}, satisfying ξ

0 ≥ ξ1 ≥
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ξ2 ≥ . . . ≥ ξ∞ and such that ξ0 is equal to ξ ≡ 1, the �all one" con�guration, ξk has the
same distribution as ξ(k) for any k ≥ 0, and ξ∞ is distributed according to µ. Let θ be
the shift operator on {0, 1}Z, i.e. the operator de�ned for any ξ ∈ {0, 1}Z and i ∈ Z by
(θξ)i = ξi+1. For k ≥ 0 the composition of order k of θ with itself will be denoted θk.
Moreover let 10 be the function de�ned for any ξ ∈ {0, 1}Z by 10(ξ) = 1{ξ0=1}. Then for
any m ≥ 0 and n ≥ 0 we have

1

n+ 1

n∑
k=0

10(θk(ξm)) ≥ 1

n+ 1

n∑
k=0

10(θk(ξ∞)). (3.7)

For any t ≥ 0 we know that (ξk(t))k∈Z is an ergodic stationary sequence (this is true for
any system with �nite range interaction, see [HOL72] page 1967). Therefore, if we denote by
S the sigma-algebra of shift invariant events with respect to µ (see Chapter 7 of [DUR10] for
precise de�nitions) then by Birkho�'s ergodic theorem the right-hand side of (3.7) converges
to E

(
10(ξ∞) | S

)
almost surely when n goes to ∞ while the left-hand side converges to

E
(
10(ξm)

)
. It follows that for any m ≥ 0 we have

E
(
10(ξm)

)
≥ E

(
10(ξ∞) | S

)
a.s.

And taking the limit when m goes to ∞

E
(
10(ξ∞)

)
≥ E

(
10(ξ∞) | S

)
a.s.

But a real-valued random variable which is bounded by its own expectation need to be
almost surely equal to it, so that in the end we have

1

n+ 1

n∑
k=0

10(θk(ξ∞))
a.s.−→
n→∞

E
(
10(ξ∞)

)
,

and it su�ces to point out that E
(
10(ξ∞)

)
= ρ to end the proof. �

3.5.2 Asymptotic behavior of the semi-in�nite processes

In order to show that the asymptotic behavior of the semi-in�nite processes is essentially
the same as the asymptotic behavior of the in�nite process, we need to make sure that
we have an equivalent of Theorem 3.5.1 for the semi-in�nite dual process, so that the
developments of section 3.5.1 remain valid in the semi-in�nite case. This question of whether
or not the phase transition remains true, and if it does, with the same critical value, is indeed
not trivial. One could indeed imagine that the boundary on the left or on the right somewhat
produce a di�erent behavior. Moreover, as it will appear later, it is a crucial point for the
proof of Theorem 3.1.1 that the phase transition remains true for the semi-in�nite processes.
The proof uses a contour argument (see for example [GRI80]) and is somewhat similar to the
proof presented in [FGGL18] for the in�nite process, nonetheless this former proof is a bit
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elliptical and one of the goals we're pursuing here is to give a clearer argument. We observe
that the phase transition for the original semi-in�nite process (in the form of Theorem 2.1.2)
is a consequence of the Theorem 3.5.11 proven below�which is only concerned with the
dual process�using the same standard arguments as in section 4 of [FGGL18]. Nonetheless
we don't state this result in this form here as it is unnecessary for our main purpose, which
is metastability.

Notice that the following Theorem is stated for the process de�ned on P(J0,+∞J) but
that by symmetry it obviously remains true for the process on P(K−∞, 0K), and more
generally for the processes de�ned on P(JN,+∞J) or P(K−∞, NK) for any value of N ∈ Z.

In order to prove this phase transition, we need a preliminary result of monotonicity in
γ. In the following lemma, we write ξ̃i,γ[0,∞[ to make explicit the dependence in γ.

Lemma 3.5.10 For any i ∈ J0,+∞J and for any t ≥ 0 we have the following:

if γ1 < γ2, then P
(
ξ̃i,γ1[0,∞[(t) = ∅

)
≤ P

(
ξ̃i,γ2[0,∞[(t) = ∅

)
.

Proof: The proof is exactly the same as the proof of Lemma 5 in [FGGL18]. �

Theorem 3.5.11 There exists 0 < γ′c < +∞ such that for all i ∈ Z∩ [0,+∞] we have:

P
(
τ̃ i[0,+∞[ = +∞

)
> 0, if γ < γ′c,

and
P
(
τ̃ i[0,+∞[ = +∞

)
= 0, if γ > γ′c.

Proof: Notice that by Lemma 3.5.10 the function γ 7→ P
(

limt→∞ ξ̃
0,γ
[0,∞](t) = ∅

)
is non-

decreasing, so that in order to prove the theorem it is su�cient to �nd two di�erent values

of the parameter γ such that P
(
τ̃ i[0,+∞[ = +∞

)
> 0 for any i ∈ Z for the �rst one and

P
(
τ̃ i[0,+∞[ = +∞

)
= 0 for the second one.

The second part of the Theorem is immediate by monotonicity. Indeed, for γ > γc (where
γc is the critical value for the in�nite process) and for any i ∈ Z

P
(
τ̃ i[0,+∞[ = +∞

)
≤ P

(
τ̃ i = +∞

)
= 0.

Moreover it has been proven in [FGGL18] that γc < 1, so that we also have γ′c < 1.

To �x ideas, we prove the �rst part of the Theorem for the process starting at {0}.
The general result will then follow as, for any i ∈ Z+, we have P

(
τ̃ i[0,+∞[ = +∞

)
≥

P
(
τ̃0

[0,+∞[ = +∞
)
(this can be showed by coupling, using a modi�cation of the graph G̃

where all events has been shifted spatially to the right i times).
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For the �rst part of the theorem, we will use the fact that the event {τ̃0
[0,+∞[ < ∞}

is equivalent to the event that ξ̃0 def
=

⋃
t≥0 ξ̃

0
[0,+∞[(t) is a �nite set. It will therefore be

su�cient to prove that P
(
|ξ̃0| <∞

)
< 1. In order to do this we consider a realization of

|ξ̃0| < ∞ and draw its contour by embedding the time-space diagram Z × R+ in R × R+

and by then de�ning

E
def
=
{

(y, t) : |y − j| ≤ 1

2
for some j ∈ ξ̃i(t), t ≥ 0

}
.

Now let �ll the holes of E to get the set Ẽ, and let Γ be the boundaries of Ẽ. Γ consists
of a sequence of alternating horizontal and vertical segments and with a little thought is
should be clear that there are exactly 4n of them (for some n ∈ Z). Moreover we encode Γ
not as a sequence of horizontal and vertical segments but as a sequence of direction triplets
(D1, D2, . . . D2n). This is done as follows: start at (1

2 , 0) and follow the boundary of Γ in
counterclockwise direction, at step i you'll be going trough Di, which is one of the seven
possible triplets:

uru, ulu, uld, drd, dru, dld, dlu,

where u, l, d, and r means �up", �left", �down", and �right". The last direction of the current
triplet is the �rst direction of the next one.

Figure 3.3: Example of a possible contour with n = 7. Some of the direction vectors are explicitly
drawn.
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Now we need to bound the probability of occurrence of some of these events. For reasons
that will become clear soon it is su�cient to bound the occurrence of dld, dlu and ulu.

First we �nd a bound for the probability of occurrence of both dld and dlu. For a given
j ∈ {1, . . . 2n}, let consider what could happen to Dj . Consider the �rst horizontal segment
which is immediately before the �rst vertical segment of Dj (see �gure 3.4), there is two
possibilities:

� if it is oriented to the left, let (k, t) ∈ Z× R+ be the coordinates of the point imme-
diately to the left of its left extremity,

� if it is oriented to the right, let (k, t) ∈ Z× R+ be the coordinates of its midpoint.

Notice that there is one possible case in which k = −1, when we are hitting the left
border of our restricted space-time diagram, but in this particular case the occurrence of a
dlu or dld is not possible, so that we can simply assume that k ≥ 0. Now let de�ne

F †j = sup{s ≤ t : T̃ †k,n = s, n ≥ 0},

and
Fj = sup{s ≤ t : T̃k,n = s, n ≥ 0}.

It is not hard to see that (see again �gure 3.4)

{Dj = dlu} ∪ {Dj = dld} ⊂ {F †j ≥ Fj}
def
= Ej .

In words, the occurrence of dld or dlu implies that when you follow the line {k} × R+

downward starting from (k, t), then the �rst event you'll encounter is a δ (see �gure 3.4).

Finally, as it doesn't matter for the jump times of a Poisson process whether the time
goes upward or downward, we have

P (Ej) =
γ

1 + γ
≤ γ.

It remains to bound the occurrence of ulu. using the same notation as in the precedent
cases for the coordinates of the objects considered, let's de�ne

G†j = sup{s ≥ t : T̃ †k,n = s, n ≥ 0},

and
Gj = sup{s ≥ t : T̃k+1,n = s, n ≥ 0}.

Then we have

{Dj = ulu} ⊂ {G†j ≤ Gj}
def
= E′j .

Indeed, the occurrence of ulu imply that when you follow simultaneously the two lines
{k} × R+ and {k + 1} × R+ upward, starting from (k, t), you'll encounter a δ on the line
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{k} × R+ before you encounter a spike on the line {k + 1} × R+ (see again �gure 3.4).
Moreover we have

P
(
E′j
)

=
γ

1 + γ
≤ γ.

Figure 3.4: On the left side we can see F †j and Fj that are represented on the time-space diagram.

The δ corresponds to F †j and the double arrow corresponds to Fj. G
†
j and Gj are represented on the

right side. The red line represents Γ and the dashed part of it represents Dj, which took value dld
on the left, and ulu on the right.

Now we would like to use the mutual independence of all the events Ej and E′j in order
to get a bound for our contour. Unfortunately there is some cases in which these events
are actually not independent. Indeed, any event E′j (corresponding to an ulu) makes use
of both the deaths occurring on the concerned portion of some line k × R+ and of the
double arrows occurring on the concerned portion of the line (k + 1)×R+. However, if the
preceding triplet is a dlu (as in the right part of Figure 3.4), then a portion of the line
(k + 1) × R+ that was used in order to bound the ulu is also used to bound this dlu, so
that the independence doesn't hold in this speci�c case. We solve this problem by avoiding
contiguity using a partition of the Di's in two subsets.

A given triplet Dj crosses one single line of the form k × R+. If k is even we say that
Dj is of type 1 whereas if k is odd we say that Dj is of type 2. That way all Di's of a given
type are non-contiguous (i.e. depend on di�erent Poisson processes or at least on disjoint
regions of the same Poisson processes).

Now we write N(dld) for the number of occurrences of dld in a given contour, N(dlu)
for the number of occurrences of dlu and so on. We also write N1(dld) and N2(dld) for the
number of dld of type 1 and type 2 respectively, N1(dlu) and N2(dlu) for dlu and so on.

For a given contour Γ, from the discussion above and from the fact that we can just
discard the occurrences of the other triplets from the intersection of events in which Γ
consists, it follows that we can bound its probability by

γN1(dld)+N1(dlu)+N1(ulu),
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or indi�erently by
γN2(dld)+N2(dlu)+N2(ulu).

Now notice that Γ necessarily contains the same number of left and right oriented
segments so that in particular, as Γ contains 2n horizontal segments, it shall contain exactly
n segments oriented to the left. Thus we have the following equation

N(dld) +N(dlu) +N(uld) +N(ulu) = n.

Moreover it is not di�cult to see that

N(uld) = N(dlu) + 1,

which, together with the previous equation, allows the following bound

N(uld) ≤ n+ 1

2
.

It follows that

N(dld) +N(dlu) +N(ulu) ≥ n− 1

2
,

so that we either have

N1(dld) +N1(dlu) +N1(ulu) ≥ n− 1

4
,

or

N2(dld) +N2(dlu) +N2(ulu) ≥ n− 1

4
.

In both cases we get the following bound

P
(

Γ
)
≤ ( 4
√
γ)n−1.

For n = 1, the probability of having a contour of length 4 is 1+γ
2+γ .

For n = 2, the 2 possibilities for the shape of Γ can be bounded by γ as both of them
contain at least an ulu or a dld, so that the probability of having a contour of length 8 can
be bounded by 2γ.

Observe that the number of possible triplets for an arbitrary n�remembering that a
given Γ contains 2n triplets�can be bounded by 42n = 16n. Indeed the �rst segment of
the �rst triplet is always oriented upward, and the �rst segment of any other triplet is
determined by the last segment of the previous one, so that the number of possibilities can
be roughly bounded by 4 for each of the Dj 's.
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Finally, for γ < 1
164

, we get the following bound

P
(
τ̃0

[0,+∞[ <∞
)
≤ 1 + γ

2 + γ
+ 2γ +

∑
n≥3

16n( 4
√
γ)n−1

=
1 + γ

2 + γ
+ 2γ + 163√γ ·

16 4
√
γ

1− 16 4
√
γ
.

When γ goes to 0 the right-hand side of the latter inequality goes to 1
2 < 1, from what

it follows that γ′c > 0. �

Having proven the phase transition for the semi-in�nite dual process we �nd ourselves in
the same situation as we were for the in�nite process at the beginning of section 3.5.1, and
it is easy to check that all the arguments given there remain valid in the semi-in�nite case.
The only results that we really are interested in are the ones concerning the sub-critical
regime so let's assume γ < γ′c. We have stochastic monotonicity and we can de�ne

µ[0,+∞[
def
= lim

t→∞
P
(
ξ[0,+∞[(t) ∈ •

)
,

and

µ̃[0,+∞[
def
= lim

t→∞
P
(
ξ̃[0,+∞[(t) ∈ •

)
.

Moreover µ[0,+∞[ and µ̃[0,+∞[ are extremal invariant, and in the sub-critical regime we
have that µ[0,+∞[ 6= δ∅ and µ̃[0,+∞[ 6= δ∅, from what it follows that we actually have

µ[0,+∞[(ξ ≡ 0) = 0 and µ̃[0,+∞[(ξ ≡ 0) = 0.

3.6 Some technical lemmas

Before entering the discussion about metastability, we establish four lemmas that will
be needed in the course of the proof. The �rst three are only consequences of the nearest-
neighbors nature of the interaction, even if it might not be immediately clear from the
proofs, which entirely rely on the graphical construction. The last one is simply a rigorous
statement of an intuitive fact, namely that the more scattered your initial con�guration is
the higher is the probability to survive. The reader in a hurry might simply skip this part
to come back to it later if needed.

Lemma 3.6.1 De�ne rN (t) = max ξN (t) and lN (t) = min ξN (t). Then, for any 0 ≤
t ≤ τN , we have the following

ξN (t) ∩ [lN (t), rN (t)] = ξ(t) ∩ [lN (t), rN (t)].
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Proof: We only need to show that ξ(t) ∩ [lN (t), rN (t)] ⊂ ξN (t) ∩ [lN (t), rN (t)]. Let x ∈
ξ(t) ∩ [lN (t), rN (t)]. As x ∈ ξ(t) there exists y ∈ Z such that there is a valid path in the
graph G from (y, 0) to (x, t), and we denote it Py→x. Now we de�ne the left and right
frontiers of the �nite process

∂leftN (t)
def
= {(lN (s), s) ∈ Z× R+, s ∈ [0, t]}

and

∂rightN (t)
def
= {(rN (s), s) ∈ Z× R+, s ∈ [0, t]}.

Assume �rst that y 6∈ {−N, . . .N}. Then the path Py→x needs to cross at least one of
the frontier. Let t′ (t′ < t) be the last time of crossing and without loss of generality assume

that this crossing is a crossing of the left frontier. Then P t
′,t
y→x - the restriction of Py→x to

the time interval [t′, t] - is a valid path from (x′, t′) = ∂leftN (t′) to (x, t), but by de�nition
x′ ∈ ξN (t′) so that for some y′ ∈ {−N, . . .N} there is a valid path Qy′→x′ from (y′, 0) to

(x′, t′). Finally the concatenation of Qy′→x′ and P
t′,t
y→x is a valid path from (y′, 0) to (x, t),

which prove that x ∈ ξN (t). Note that in the two last sentences when we used the expression
�valid path" what we really meant is valid path for the �nite process.

If y ∈ {−N, . . .N}, then either Py→x stays inside the frontiers of the �nite process and
there is nothing to prove, either it crosses one of the frontiers and the argument is the same
as above. �

Lemma 3.6.2 Fix some N ∈ N∗ and for some non-empty sets B ⊂ Z ∩ [1, N ] and
C ⊂ Z ∩ [−N,−1] de�ne the stopping times

RBN = inf{t > 0 : −N ∈ ξB]−∞,N ](t)},

and
LCN = inf{t > 0 : N ∈ ξC[−N,∞[(t)}.

If τB∪CN > max
(
RBN , L

C
N

)
, then for any t > max

(
RBN , L

C
N

)
,

ξN (t) = ξB∪CN (t).

Proof: The proof is similar to the proof of the previous lemma and relies essentially on the
fact that the interaction is between nearest neighbors. We assume τB∪CN > max

(
RBN , L

C
N

)
and notice that it implies that both RBN and LCN are �nite. What we need to show is that
for t > max

(
RBN , L

C
N

)
we have ξN (t) ⊂ ξB∪CN (t).

Let x ∈ ξN (t). There exists y ∈ Z such that there is a valid path in the graph G from
(y, 0) to (x, t), and we denote it Py→x. If y ∈ B ∪ C there if of course nothing to prove, so
let's assume that y 6∈ B ∪ C. Without loss of generality we assume that y belongs to the
right part of the graph Z ∩ [0, N ]. We consider the right frontier of the left part, denoted
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∂C[−N,∞[(t), and de�ned for t ≤ LCN as follows

∂C[−N,∞[(t)
def
=
{

(rC[−N,∞[(s), s) ∈ Z× R+, s ∈ [0, t]
}
,

where rC[−N,∞[(t)
def
= max ξC[−N,∞[(t) for any t ≥ 0.

We write simply ∂C[−N,∞[ for ∂
C
[−N,∞[(L

C
N ). As LCN is �nite, ∂C[−N,∞[ goes from (maxC, 0)

to (N,LC). Now, as y > maxC and x ≤ N , Py→x need to cross the frontier ∂C[−N,∞[ at
least once, and as in the previous proof, we let t′ be the time of the last crossing. Then
we can �nd a valid path Qy′→x′ for some y′ ∈ C, from (y′, 0), to (∂C[−N,∞[(t

′), t′), and by

concatenation with P t
′,t
y→x - the restriction of Py→x to the time interval [t′, t] - we get a valid

path from (y′, 0) to (x, t), which prove that x ∈ ξB∪CN (t).

�

Lemma 3.6.3 For any t < τN we have

min ξN (t) = min ξ[−N,∞[(t),

and
max ξN (t) = max ξ]−∞,N ](t).

Proof: Let t < τN . We prove the lemma only for min ξN (t) as the proof for max ξN (t)
is identical. First notice that by monotonicity we have min ξ[−N,∞[(t) ≤ min ξN (t). Now
by de�nition there exists a path Py→x from (y, 0) to (x, t) = (min ξ[−N,∞[(t), t), for some
y ∈ Z ∩ [−N,∞[. Let ∂leftN (t) be as in the proof of Lemma 3.6.1. If you suppose that
min ξ[−N,∞[(t) < min ξN (t), then Py→x needs to cross ∂leftN (t) at least once, so we let t′ be the
last time of crossing. Then as usual there exists a path Qy′→x′ for some y′ ∈ {−N, . . . , N},
from (y′, 0), to (∂leftN (t′), t′), and by concatenation with P t

′,t
y→x - the restriction of Py→x to

the time interval [t′, t] - we get a valid path from (y′, 0) to (x, t), which is a contradiction.
�

Lemma 3.6.4 Let A ⊂ Z, such that |A| = n for some n ≥ 0. Then

P
(
τA <∞

)
≤ P

(
τ{1,...,n} <∞

)
.

Proof: This lemma is the equivalent for our process to part c of Theorem 1.9 in [LIG85]
concerning the Contact process, and the proof is quite similar so we will merely sketch it
here.

We consider a coupling of (ξ{1,...n}(t))t≥0 with two other processes, denoted (ξ′(t))t≥0

and (ξ(t))t≥0. These processes are de�ned as follows
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� We have ξ{1,...n}(0) = {1, . . . n} by de�nition, and we let ξ′(0) = ξ(0) = A. Active
neurons are paired in increasing order in the three processes.

� Whenever a leakage occurs in ξ{1,...n}(t) at some time t ≥ 0, the corresponding paired
neurons are also a�ected by leakage in ξ′(t) and ξ(t).

� When a spike occurs in ξ{1,...n}(t) at some site i ∈ Z for some t ≥ 0, the spike
is propagated in the paired processes in the following sense: the neuron number i
becomes quiescent in all three processes ; if neuron i−1 (resp. i+1) is quiescent in all
the processes then it becomes active in all processes, and the newly activated neurons
are paired together; if i− 1 (resp. i+ 1) is already active in ξ{1,...n}(t) but is quiescent
in ξ(t) then a neuron i − 1 (resp. i + 1) becomes active in ξ(t), but not in ξ′(t), and
the newly activated neuron then spikes and is a�ected by leakage e�ect according to
its own independent exponential clocks until further notice ; if i−1 (resp. i+1) is not
already active in ξ{1,...n}(t) but is in ξ(t) then neuron i − 1 (resp. i + 1) is activated
in both ξ{1,...n}(t) and ξ′(t), and the newly activated neurons are paired together as
well as with the neuron that was already active in ξ(t).

With this construction we have that |ξ{1,...n}(t)| = |ξ′(t)| ≤ |ξ(t)| for any t ≥ 0, as
whenever a neuron is activated in the two �rst processes, either it is also activated in ξ(t),
either the newly activated neuron is paired with an already supernumerary active neuron in
ξ(t). Moreover it is clear that (ξ(t))t≥0 is distributed like (ξA(t))t≥0, and the desired result
follows.

�

3.7 Proof of Theorem 3.1.1

With this preliminaries completed we can now prove the main result. Note that for
reasons related to the way we constructed the proof, even if the theorem is concerned with
the time of extinction of the process (ξN (t))t≥0, the critical value γ′c for which the theorem
is stated and here proved is the critical value for the semi-in�nite process (see Theorem
3.5.11).

From the de�nition of (ξN (t))t≥0 it is clear that, for any N ∈ N, P (τN > t) is continuous
and strictly decreasing in t (putting aside the pathological case γ = 0, in which τN = ∞
almost surely), so that we can de�ne βN the unique value in R+ such that

P (τN > βN ) = e−1.

The main ingredient of the proof is the Proposition 3.18 below. Theorem 3.1.1 then
follows from Corollary 3.7.2 and Proposition 5.2.3, which tell us respectively that τN/βN
converges in distribution to an exponential random variable of mean 1 and that E (τN ) ∼

N∞
βN .
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Proposition 3.7.1 For any 0 < γ < γ′c and for any s, t ≥ 0 the following holds

lim
N→∞

∣∣∣∣P( τNβN > s+ t

)
− P

(
τN
βN

> s

)
P
(
τN
βN

> t

)∣∣∣∣ = 0. (3.8)

Proof: Let 0 < γ < γ′c and, using the fact that the process is Markovian, observe that

P
(
τN
βN

> s+ t

)
=

∑
A⊆{−N,...N}

A 6=∅

P
(
τN
βN

> s+ t
∣∣∣ ξN (βNs) = A

)
P
(
ξN (βNs) = A

)

=
∑

A⊆{−N,...N}
A 6=∅

P
(
τN
βN

> s+ t
∣∣∣ ξN (βNs) = A

)
P
(
ξN (βNs) = A, τN > βNs

)

=
∑

A⊆{−N,...N}
A 6=∅

P
(
τAN
βN

> t

)
P
(
ξN (βNs) = A, τN > βNs

)

=
∑

A⊆{−N,...N}
A 6=∅

(
P
(
τAN
βN

> t

)
− P

(
τN
βN

> t

))
P
(
ξN (βNs) = A, τN > βNs

)

+ P
(
τN
βN

> s

)
P
(
τN
βN

> t

)
. (3.9)

Now, for any b > 0, we de�ne the following subset of P (Z)

Fb =

{
A ∈P (Z) :

|A ∩ [−b, 0]|
b+ 1

>
ρ

2
,
|A ∩ [0, b]|
b+ 1

>
ρ

2

}
.

Here ρ denotes the density of (ξ(t))t≥0 as de�ned earlier. This set is the key point of the
proof, the idea behind its de�nition being that, as the process is spatially ergodic, whenever
b will be big enough the measure of the set Fb will be as close to one as needed.

Now from (3.9), using monotonicity, it follows that
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∣∣∣∣P( τNβN > s+ t

)
− P

(
τN
βN

> s

)
P
(
τN
βN

> t

)∣∣∣∣
=

∑
A⊆{−N,...N}

A 6=∅

(
P
(
τN
βN

> t

)
− P

(
τAN
βN

> t

))
P
(
ξN (βNs) = A, τN > βNs

)

≤ P
(
τN
βN

> s

)
P
(
τN
βN

> t

)
−

∑
A⊆{−N,...N}

A∈Fb

P
(
τAN
βN

> t

)
P
(
ξN (βNs) = A

)

≤ P
(
τN
βN

> s

)
P
(
τN
βN

> t

)
− min
A⊆{−N,...N}

A∈Fb

P
(
τAN
βN

> t

)
P
(
ξN (βNs) ∈ Fb

)

= P
(
τN
βN

> s

)[
P
(
τN
βN

> t

)
− min
A⊆{−N,...N}

A∈Fb

P
(
τAN
βN

> t

)]

+ min
A⊆{−N,...N}

A∈Fb

P
(
τAN
βN

> t

)[
P

(
τN
βN

> s

)
− P

(
ξN (βNs) ∈ Fb

)]

≤

[
P
(
τN
βN

> t

)
− min
A⊆{−N,...N}

A∈Fb

P
(
τAN
βN

> t

)]
+ P

(
τN
βN

> s, ξN (βNs) 6∈ Fb
)
. (3.10)

From now on let �x ε > 0. The inequality (3.10) tells us that in order to prove (5.3) it
is su�cient to prove that we can �nd b = bε and Nε such that, for all N ≥ Nε,

P
(
ξN (βNs) 6∈ Fb, τN > βNs

)
< ε, (3.11)

and

P
(
τN
βN

> t

)
− min
A⊆{−N,...N}

A∈Fb

P
(
τAN
βN

> t

)
< ε. (3.12)

We begin with (3.12). First notice that it is enough to show that there exists b = bε and
Nε such that for all N ≥ Nε and all A ∈ Fb we have

P
(
τN
βN

> t

)
− P

(
τAN
βN

> t

)
< ε,

and, using monotonicity again, we have
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P
(
τN
βN

> t

)
− P

(
τAN
βN

> t

)
= P

(
τN
βN

> t,
τAN
βN
≤ t
)
≤ P

(
τN 6= τAN

)
, (3.13)

so that it will be su�cient to bound P
(
τN 6= τAN

)
.

Now for some big enough n, as µ̃ put no mass on ξ ≡ 0, we have that

µ̃[0,+∞[

({
B : B ∩ [0, n] = ∅

})
<
ε

2
.

We take b1 such that b1 · ρ/2 ≥ n and choose N1 > b1. Then for any A ∈ Fb1 we have
|A ∩ [0, b1]| ≥ b1 · ρ/2 ≥ n, so using Lemma 3.6.4 we get that for any A ∈ Fb1 and for any
N ≥ N1

P
(
τ
A∩[0,b1]
[−N,∞[ <∞

)
≤ P

(
τ
{−N,...,−N+n}
[−N,∞[ <∞

)
,

and by duality we have

P
(
τ
{−N,...,−N+n}
[−N,∞[ =∞

)
= lim

t→∞
P
(
ξ
{−N,...,−N+n}
[−N,∞[ (t) 6= ∅

)
= lim

t→∞
P
(
ξ̃[−N,∞[(t) ∩ {−N, . . . ,−N + n} 6= ∅

)
= µ̃[0,+∞[ (B : B ∩ [0, n] 6= ∅) ,

which proves that, for the b1 and N we chose,

P
(
τ
A∩[0,b1]
[−N,∞[ <∞

)
<
ε

2
. (3.14)

With the same arguments we also get that

P
(
τ
A∩[−b1,0]
]−∞,N ] <∞

)
<
ε

2
. (3.15)

This leads us to de�ne the following event

E
def
=
{
τ
A∩[0,b1]
[−N,∞[ =∞, τA∩[−b1,0]

]−∞,N ] =∞
}
.

We also de�ne the stopping time

U = max(L
A∩[−b1,0]
N , R

A∩[0,b1]
N ),

where LA∩[−b1,0]
N and RA∩[0,b1]

N are as in Lemma 3.6.2.

Then, on E we have τAN ≥ τ
A∩[−b1,b1]
N ≥ U , and from Lemma 3.6.2 it follows that, for

t > U , we have ξN (t) = ξ
A∩[−b1,b1]
N (t). By monotonicity we have as well for any t > U
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ξN (t) = ξAN (t).

Therefore, on E, we have τN = τAN .

Now, using this last remark as well as (3.14) and (3.15), we get

P
(
τN 6= τAN

)
≤ P

({
τN 6= τAN

}
∩ E

)
+ P (Ec) < ε,

which gives a �nal point to the proof of (3.12).

It remains to prove (3.11). For any choice of b, N and L that satis�es the following
condition:

b < N − L < N, (3.16)

we have

P
(
ξN (βNs) 6∈ Fb, τN > βNs

)
≤ P

(
ξN (βNs) 6∈ Fb, τN > βNs,min ξN (βNs) < −N + L, max ξN (βNs) > N − L

)
+ P

(
min ξN (βNs) ≥ −N + L, τN > βNs

)
+ P

(
max ξN (βNs) ≤ N − L, τN > βNs

)
. (3.17)

For the �rst term in the summation in (3.17) we have

P
(
ξN (βNs) 6∈ Fb, τN > βNs, min ξN (βNs) < −N + L, max ξN (βNs) > N − L

)
≤ P

(
ξN (βNs) 6∈ Fb, τN > βNs, min ξN (βNs) < −b, max ξN (βNs) > b

)
,

so that using Lemma 3.6.1 this term can be bounded by P
(
ξ(βNs) 6∈ Fb

)
.

By the spatial ergodicity of µ (Theorem 3.5.9) we have µ (F cb ) −→
b→∞

0. From this, and

using the stochastic monotonicity (Proposition 3.5.2), it follows that we can �nd b2 such
that for any b > b2

P
(
ξ(βNs) 6∈ Fb

)
<
ε

3
.

From Lemma 3.6.3 we have for any N and L

P
(

min ξN (βNs) ≥ −N + L, τN > βNs
)
≤ P

(
min ξ[−N,∞[(βNs) ≥ −N + L

)
.
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But by monotone convergence once again we have

P
(

min ξ[−N,∞[(βNs) ≥ −N + L
)

≤ µ[−N,+∞[

({
A ⊂ [−N,∞[ ∩ Z : A ∩ [−N,−N + L− 1] = ∅

})
= µ[0,+∞[

({
A ⊂ [0,∞[ ∩ Z : A ∩ [0, L− 1] = ∅

})
.

And the later will be arbitrarily close to 0 for arbitrarily big L. We therefore �x some
big enough L and then �x some N2 such that condition (3.16) is satis�ed (which in our case
means max(b1, b2) < N2 − L < L) and for any N ≥ N2 we get that

P
(

min ξN (βNs) ≥ −N + L, τN > βNs
)
<
ε

3
.

With the same arguments and by symmetry the last term in (3.17) is also bounded by
ε/3 for N ≥ N2 and for the same choice of L. To �nish of course we take bε = max(b1, b2)
and Nε = max(N1, N2) and both (3.12) and (3.11) are satis�ed. �

From Proposition 3.18 we obtain the following corollary.

Corollary 3.7.2 For any 0 < γ < γ′c the following convergence holds

τN
βN

D−→
N→∞

E (1). (3.18)

Proof: This result follows from the de�nition of βN and a simple density argument. Taking
s = t = 1 in Proposition 3.18 we have

lim
N→∞

P
(
τN
βN

> 2

)
= e−2.

Iterating this argument we easily obtain that for any n ∈ N

lim
N→∞

P
(
τN
βN

> 2n
)

= e−2n . (3.19)

Moreover, taking s = t = 2−1 in Proposition 3.18 we have

lim
N→∞

P
(
τN
βN

> 2−1

)
= e−2−1

.
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And iterating this argument once again we have for any n ∈ N

lim
N→∞

P
(
τN
βN

> 2−n
)

= e−2−n . (3.20)

Now for any n ∈ N consider the set Bn of the real numbers which binary expansion
contains exactly n times the digit 1, that is:

Bn
def
=

{
x ∈ R : x =

∑
k∈Z

ak2
k, where (ak)k∈Z ∈ {0, 1}Z is such that

∑
k∈Z

ak = n

}
.

We can then reformulate equations (3.19) and (3.20) as:

lim
N→∞

P
(
τN
βN

> t

)
= e−t for any t ∈ B1.

By induction we then easily get (using Proposition 3.18) that for any n ∈ N

lim
N→∞

P
(
τN
βN

> t

)
= e−t for any t ∈ Bn.

Now notice that any real number has a binary expansion, so that it can be easily
approximated�by below or by above indi�erently�by a sequence in

⋃
n∈NBn. Then the

result follows by monotonicity of the function t 7→ P
(
τN
βN

> t
)
. �

It only remains to prove that we can replace βN by E (τN ) in Corollary 3.7.2. It follows
from the proposition below.

Proposition 3.7.3 The following convergence holds

lim
N→∞

E (τN )

βN
= 1.

Proof: We know from (3.9) and by monotonicity that for any s, t ≥ 0 we have

P
(
τN
βN

> s+ t

)
≤ P

(
τN
βN

> s

)
P
(
τN
βN

> t

)
,

so that it follows from the de�nition of βN that for any integer n we have

P
(
τN
βN

> n

)
≤ e−n.
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In general for any t ≥ 0 we therefore have

P
(
τN
βN

> t

)
≤ e−btc.

Moreover we have

E (τN )

βN
=

∫ ∞
0

P
(
τN
βN

> t

)
dt,

so that �nally�by Dominated Convergence Theorem and Proposition 3.7.2�we get

lim
N→∞

E (τN )

βN
=

∫ ∞
0

lim
N→∞

P
(
τN
βN

> t

)
dt =

∫ ∞
0

e−tdt = 1.

�
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Chapter 4

Asymptotically deterministic time of

extinction in the super-critical region

for the one-dimensional lattice

process

4.1 Asymptotically deterministic time of extinction

In this chapter we continue to consider the process de�ned on the one-dimensional
lattice and our aim is to prove that the main result of the previous chapter, that is to say
the convergence of the renormalized time of extinction to an exponential random variable
(Theorem 3.1.1) doesn't hold anymore if γ is taken big enough. We actually prove the
following result.

Theorem 4.1.1 Suppose that γ > 1. Then the following convergence holds

τN
E(τN )

P−→
N→∞

1,

where P denotes a convergence in probability.

This result is in some sense symmetrical to Theorem 3.1.1. Indeed the later tells us
that in a portion of the sub-critical region the time of extinction is asymptotically memory-
less, which means that it is highly unpredictable: knowing that the process survived up to
time t doesn't give you any information about what should happen after time t. What we
prove here is that in a portion of the super-critical regime (indeed γc < 1 as proven in in
[FGGL18]) the time of extinction is asymptotically constant, so that it is highly predictable.

In order to establish this result, we will prove two propositions, from which Theorem
4.1.1 will follow immediately. We �rst prove that the renormalized time of extinction evolves
asymptotically like a logarithm, which is the object of the following proposition.
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Proposition 4.1.2 Suppose that γ > 1. There exists a constant 0 < C <∞ depending
on γ such that the following convergence holds

τN
log(2N + 1)

P−→
N→∞

C.

Then, we prove that the same is true for the expectation.

Proposition 4.1.3 Suppose that γ > 1. Then the following convergence holds

E (τN )

log(2N + 1)
−→
N→∞

C,

where C is the same constant as in Proposition 4.1.2.

In the following we adopt the same notation and conventions as in the previous chapter.

4.2 Proof of Theorem 4.1.1

4.2.1 Proof of Proposition 4.1.2

Our proof uses some of the ideas developed in [DL88] concerning the Harris contact
process. We de�ne the following function

t 7→ f(t) = log
(
P
(
ξ0(t) 6= ∅

) )
.

We also de�ne the following constant

C ′ = − sup
s>0

f(s)

s
.

The �rst step is to show that the function f is superadditive. For any s, t ≥ 0 we have:

P
(
ξ0(t+ s) 6= ∅ | ξ0(t) 6= ∅

)
≥ P

(
ξ0(s) 6= ∅

)
.

This last inequality follows from Markov property and the fact that having a higher
number of active neurons in the initial con�guration implies having a higher probability of
being alive for the process at any given time s (see Proposition 4.2 in [? ]). Moreover if
ξ0(t) 6= ∅ then |ξ0(t)| ≥ 1 = |ξ0(0)|. Furthermore it can be rewritten as follows

P
(
ξ0(t+ s) 6= ∅

)
≥ P

(
ξ0(t) 6= ∅

)
P
(
ξ0(s) 6= ∅

)
,

and taking the log gives the superaddtivity we are looking for. Now from a well-known
result about superadditive functions, sometimes called the Fekete lemma (see Section B.2
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in Appendix B), we get the following convergence

f(t)

t
−→
t→∞

− C ′. (4.1)

For any t > 0 we also have

P
(
ξ0(t) 6= ∅

)
≤ e−C′t. (4.2)

Notice that while it is clear that 0 ≤ C ′ <∞, it is not obvious that C ′ > 0. We show that
it is the case using a coupling with a continuous time branching process having birth rate
1 and death rate γ (see Section B.3 in B). Let (Zt)t≥0 represent the number of individual
in the population of this branching process, with Z0 = 1. The expectation at time t can be
explicitly computed. For any γ ≥ 0 and t ≥ 0 we have

E (Zt) = e−(γ−1)t. (4.3)

The coupling is done as follows, at time 0 the only active neuron in ξ0(0) is coupled
with the only individual in Z(0). By this we mean that if this neuron becomes quiescent
then the individual dies, and if the neuron spikes, then the individual is replaced by two
new individuals. When a spike occurs, there is three possibilities: two neurons are activated,
one neuron is activated, or no neuron is activated, depending on how much neighbors are
quiescent. In any of these cases each activated neuron is coupled with a newborn individuals,
and any supernumerary newborn individual is given his own independent exponential clocks.
At any time t ≥ 0 we obviously have |ξ0

t | ≤ Zt. Using (4.3) and Markov inequality it follows
that

P
(
ξ0(t) 6= ∅

)
≤ P (Zt ≥ 1) ≤ e−(γ−1)t.

Then we take the log and divide by t in the previous inequality and we obtain at the
limit that C ′ ≥ γ − 1, and from the assumption that γ > 1 we get C ′ > 0.

Let us break the suspense and already reveal that the constant C we are looking for
is actually simply the inverse of C ′. Therefore in order to prove our result we are going to
prove that for any ε > 0 we have the two following convergences

P
(

τN
log(2N + 1)

− 1

C ′
> ε

)
−→
N→∞

0, (4.4)

and

P
(

τN
log(2N + 1)

− 1

C ′
< −ε

)
−→
N→∞

0. (4.5)

Let us start with (4.4), which is the easiest part. Using additivity (Proposition 3.2.1)
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and inequality (4.2) we get

P (ξN (t) 6= ∅) ≤ (2N + 1)P
(
ξ0(t) 6= ∅

)
≤ (2N + 1)e−C

′t. (4.6)

Now, for any ε > 0, if you let t = ( 1
C′ + ε) log(2N + 1) then the following holds

P
(

τN
log(2N + 1)

− 1

C ′
> ε

)
= P (ξN (t) 6= ∅) ≤ e−C′ε log(2N+1).

Then the fact that C ′ > 0 ensures us that the term on the right-hand side of the
inequality goes to 0 as N diverges, which proves (4.4).

It remains to prove (4.5). If for some N ∈ N∗ we take t =
(

1
C′ − ε

)
log(2N + 1), then we

can write

P
(

τN
log(2N + 1)

− 1

C ′
< −ε

)
= P (ξN (t) = ∅) ,

so that it su�ces to show that the right-hand side converges to 0 for this choice of t
as N goes to ∞. For reasons that will become clear in a moment we will actually write
t = 1

C′ (1− ε′) log(2N + 1), with ε′ = C ′ε.

From (4.1) (and from the fact that C ′ > 0) we get that for any ε > 0 and for big enough
t

f(t)

t
≥ −(1 + ε′)C ′,

which can be written

P
(
ξ0
t = ∅

)
≤ 1− e−(1+ε′)C′t.

Therefore, with t = 1
C′ (1− ε′) log(2N + 1) and N big enough we have

P
(
ξ0
t = ∅

)
≤ 1− 1

(2N + 1)1−ε′2 . (4.7)

Now for any k ∈ Z we de�ne

Fk
def
= J(2k − 1)K log(2N + 1), (2k + 1)K log(2N + 1)K,

where K is some constant depending on N which value will be chosen later in order for
K log(2N + 1) to be an integer. We then consider a modi�cation of the process (ξN (t))t≥0

where all neurons at the border of one of the sub-windows Fk de�ned above (i.e. all neurons
indexed by (2k+ 1)K log(2N + 1) for some k ∈ Z) are �xed in quiescent state and therefore
are never allowed to spike. This modi�ed process is denoted (ξ̄N (t))t≥0. Notice that the
fact that the neurons at the borders of the windows Fk are never allowed to spike makes
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the evolution of (ξ̄N (t))t≥0 independent from one window to another. We also de�ne the
following con�guration

AN
def
=

{
2kK log(2N + 1) for k ∈ Z ∩

[
− N

2K log(2N + 1)
,

N

2K log(2N + 1)

]}
.

In words AN is a �nite con�guration in which the only active sites are the ones at
the center of the Fk windows. We refer to Figure 4.1 for a graphical representation of our
construction.

Now for any t ≥ 0 we de�ne rt
def
= max ξ0

t . Considering the spiking process (ξt)t≥0 with no
leaking it is easy to see that the right edge rt can be coupled with an homogeneous Poisson
process of parameter 1, that we denote (M(t))t≥0, in such a way that for any m ≥ 0

P
(

sup
s≤t

rs ≥ m
)
≤ P

(
M(t) ≥ m

)
.

We have

E
(
eM(t)

)
= et(e−1),

so taking the exponential, using Markov inequality and taking m = K ′t (where K ′ is
some constant that we are going to �x in a moment) we get

P
(

sup
s≤t

rs ≥ K ′t
)
≤ et(e−1−K′)

≤ et(2−K′),

where in the last inequality we simply used the fact that e− 1 < 2.

Now taking again t = 1
C′ (1− ε′) log(2N + 1) and K ′ = 2(1 + C ′) we get

P
(

sup
s≤t

rs ≥ m
)
≤ e−2(1−ε′) log(2N+1),

and assuming without loss of generality that ε′ < 1
2 we get

P
(

sup
s≤t

rs ≥ m
)
≤ 1

2N + 1
. (4.8)

It is now possible to �x the value of the constant K we introduced earlier. We take

K = inf

{
x ∈ R such that x ≥ K ′

C ′
and x log(2N + 1) ∈ N

}
.
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In words we take K equal to K′

C′ and then enlarge it slightly in order for K log(2N + 1)
to be an integer. We also de�ne the following event

Et
def
=
{
ξ0
s doesn't escape from F0 for any s ≤ t

}
.

Now taking N large enough and t = 1
C′ (1− ε′) log(2N + 1) we have

P (ξN (t) = ∅) ≤ P
(
ξ̄ANN (t) = ∅

)
= P

(
ξ̄ 0
N (t) = ∅

)(2N+1)/(2K log(2N+1))

≤
(
P
(
ξ̄ 0
N (t) = ∅ ∩ Et

)
+ P (Ect )

)(2N+1)/(2K log(2N+1))

≤
(
P
(
ξ0(t) = ∅

)
+ P (Ect )

)(2N+1)/(2K log(2N+1))

≤
(

1−
(

1

(2N + 1)1−ε′2 −
2

2N + 1

))(2N+1)/(2K log(2N+1))

.

To obtain the inequality above we used (4.7) and the fact that inside Et the process
(ξ̄ 0
N (s))0≤s≤t evolves just like (ξ0

s )0≤s≤t, which allows us to bound P
(
ξ0
N (t) = ∅

)
, and we

used (4.8) to bound P (Ect ).

Finally we let

aN =
1

(2N + 1)1−ε′2 −
2

2N + 1
,

and

bN =
2N + 1

2K log(2N + 1)
,

so that the last bound can be written (1− aN )bN . Then

(1− aN )bN = ebN log(1−aN ) ≤ e−bNaN ,

and since aNbN −→
N→∞

∞, it follows that e−bNaN goes to 0 as N goes to ∞.

4.2.2 Proof of Proposition 4.1.3

The last step consists in showing that the same convergence holds for the expectation.
In order to do so we shall recall a classical result from the theory of probability about the
convergence of a collection of random variable
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Figure 4.1: The construction of the current section, represented in the space-time diagram in-
troduced in the previous chapter. the horizontal axis represents the lattice Z and the vertical axis
represents the time. The blue points are the elements of the con�guration AN , while the blue lines rep-
resent the valid paths in the graphical construction in a realization of the modi�ed process (ξ̄ 0

N (t))t≥0,
starting from these points. The vertical gray lines represents the particles that are not allowed to spike
in our construction, acting as hermetic walls in the space-time diagram. The green area represent
the portion of the diagram in which the event Et is satis�ed.

De�nition 4.2.1 A collection of random variable (Yi)i∈I , where I is some countable or
uncountable set of indexes, is said to be uniformly integrable if the following holds

lim
M→∞

(
sup
i∈I

E
(
|Yi|1{|Yi|>M}

))
= 0.

Now it is a well-known fact that if a sequence of random variables (Yn)n∈N converges in
probability to some random variable Y , it doesn't necessarily implies that E(Xn) −→

n→∞
E(X).

Nonetheless this implication holds true with the additional assumption that the sequence
is uniformly integrable. In fact we have the following theorem.

Theorem 4.2.2 If Yn
P−→

n→∞
Y , then the following are equivalent:

(i) {Yn, n ≥ 0} is uniformly integrable,

(ii) E(Yn) −→
n→∞

E(Y ) <∞.
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Proof: See Theorem 5.5.2 in [DUR10]. �

It is therefore su�cient to show that
(
τN/ log(2N + 1)

)
N∈N∗ is uniformly integrable,

and the result will then follow from Proposition 4.1.2.

For some M > 0 and some N ∈ N∗ it is easy to see that we have the following

E
(

τN
log(2N + 1)

1{ τN
log(2N+1)

>M}

)
=

∫ ∞
0

P
(

τN
log(2N + 1)

> max(t,M)

)
dt.

Now using inequality (4.6) and the previously proven fact that C ′ > 0 when γ > 1 we
have the following

∫ ∞
0

P
(

τN
log(2N + 1)

> max(t,M)

)
dt

=

∫ M

0
P
(

τN
log(2N + 1)

> M

)
dt+

∫ ∞
M

P
(

τN
log(2N + 1)

> t

)
dt

≤ (2N + 1)

[∫ M

0
e−C

′ log(2N+1)Mdt+

∫ ∞
M

e−C
′ log(2N+1)tdt

]
= (2N + 1)1−C′M

[
M +

1

C ′ log(2N + 1)

]
,

where C ′ is the same constant as in the previous proof. Without loss of generality we assume
that M > 1

C′ , so that the bound above is decreasing in N , from what we get

sup
n∈N∗

E
(

τN
log(2N + 1)

1{ τN
log(2N+1)

>M}

)
≤ 31−C′M

[
M +

1

C ′ log(3)

]
. (4.9)

Finally the right-hand side of inequality (4.9) goes to 0 when M goes to ∞, which ends
the proof.



Chapter 5

The complete graph process

5.1 Metastability in the complete graph process

In this chapter, we're aimed to study the process de�ned on the complete graph of size
N . Notice that in the complete graph setting it doesn't really make sense to consider an
in�nite process anymore, as any neuron would be activated by a spike in�nitely many times
in any time interval for example, moreover the minimal conditions for the existence of an
in�nitesimal generator are not satis�ed. Luckily, unlike in chapter 3, we won't need any
in�nite process in the course of the proof.

For some N ∈ N we let S′N = J1, NK and for any i ∈ S′N we let V′N,i = V ′N \ {i}. Now
write

(
ζN (t)

)
t≥0

for the equivalent of the �nite lattice process (ξN (t))t≥0 in this complete
graph setting, that is to say the process obtained when SN is replaced by S′N and VN
by V′N . This is the interacting particle system taking value in {0, 1}N which dynamic is
characterized by the following generator

L c
Nf(ζ) = γ

∑
i∈Z

(
f(π†,cN,i(ζ))− f(ζ)

)
+
∑
i∈Z

ζi

(
f(πcN,i(ζ))− f(ζ)

)
, (5.1)

where the π†,cN,i's and π
c
N,i's are maps from {0, 1}N to {0, 1}N , π†,cN,i being de�ned as usual

(see (3.2)), and πcN,i being de�ned for any i ∈ J1, NK as follows:

(
πcN,i(ζ)

)
j

=

{
0 if j = i,

max(ζi, ζj) if j 6= i.
(5.2)

The existence and uniqueness of the process are guaranteed by the �niteness of the state
space (see Theorem 3.9 in [LIG85])). In this instantiation every neuron is connected to one
another so that when a single active neuron spikes, every other neuron becomes active.

Let σN denote the time of extinction of this �nite process,

σN
def
= inf{t ≥ 0 : ζN (t)i = 0 for any i ∈ J1, NK}.
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The result we're aimed to prove is that for the complete graph instantiation the result of
convergence of the renormalized time of extinction toward an exponential random variable
that was proven in the lattice case for small γ now holds for any positive γ. This is the
object of the following theorem.

Theorem 5.1.1 For any γ > 0 the following convergence holds

σN
E(σN )

D−→
N→∞

E (1).

5.2 Proof of Theorem 5.1.1

We adopt the same conventions as in the previous chapters regarding the notation,
identifying {0, 1}J1,NK with P(J1, NK) and indicating the initial state as a superscript when
it is di�erent from the whole space J1, NK. This convention applies to the time of extinction
as well.

The Markov process (ζN (t))t≥0 has three communicating classes, which are visited in
increasing order. The �rst one contains only the "all one" state, which is left de�nitively
after the �rst spike/leak, and the third one contains only the "all zero" state, which is an
absorbing state. The second class contains all the other states. As the absorbing state is
accessible from the second class, standard results on irreducibility tell us that the time of
extinction σN is almost surely �nite. It implies that P(σN > t) converges to 0 as t diverges.

Moreover it is clear from the de�nition of (ζN (t))t≥0 that P(σN > t) is a continuous and
decreasing function of t. Therefore we can de�ne λN to be the unique value in R+ satisfying
the following equality

P(σN > λN ) = e−1.

The proof of Theorem 5.1.1 follows the same general line as the proof of Theorem 3.1.1.
The main ingredient of the proof is the Proposition 5.2.1 below, which is the equivalent of
Proposition 3.18 in the complete setting, but is proven using entirely di�erent techniques.
Theorem 5.1.1 then follows from Corollary 5.2.2 and Proposition 5.2.3, which tell us respec-
tively that σN/λN converges in distribution to an exponential random variable of mean 1
and that E (σN ) ∼

N∞
λN .

Proposition 5.2.1 For any γ > 0 and for any s, t ≥ 0 the following holds

lim
N→∞

∣∣∣∣P(σNλN > s+ t

)
− P

(
σN
λN

> s

)
P
(
σN
λN

> t

)∣∣∣∣ = 0. (5.3)

Proof: In our complete graph setting there is no spatial dependency between the neurons
like in the lattice setting, so that the law of the time of extinction is impacted by the initial
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state only through its cardinal. In particular, for any 1 ≤ k ≤ N and any A ∈ P(J1, NK)
of size k , σAN has the same law as σJ1,kK

N . Using the Markov property and this last remark
we have

∣∣∣∣P(σNλN > s+ t

)
− P

(
σN
λN

> s

)
P
(
σN
λN

> t

)∣∣∣∣
=

N∑
k=1

∣∣∣∣∣P
(
σ

J1,kK
N

λN
> t

)
− P

(
σN
λN

> t

)∣∣∣∣∣ · P(|ζN (λNs)| = k
)

≤
bN2 c∑
k=1

P (|ζN (λNs)| = k) +
N∑

k=dN2 e

∣∣∣∣∣P
(
σ

J1,kK
N

λN
> t

)
− P

(
σN
λN

> t

)∣∣∣∣∣
We �x ε > 0. In order to prove the desired result we show that we can �nd N big enough

such that

N∑
k=dN2 e

∣∣∣∣∣P
(
σ

J1,kK
N

λN
> t

)
− P

(
σN
λN

> t

)∣∣∣∣∣ < ε, (5.4)

and

bN2 c∑
k=1

P (|ζN (λNs)| = k) < ε. (5.5)

We start with (5.4), which is the easiest part. For any
⌈
N
2

⌉
≤ k ≤ N we denote by Ek

the event in which every active neuron in the process starting from J1, kK becomes quiescent
before any of them is a�ected by a spike. Notice that on the complementary event Eck there
is a spike a�ecting the process at some point, and that the process starting from J1, kK
and the process starting from J1, NK become equal at this point (both will be in the state
J1, NK \ {i}, where i is the neuron that just spiked). It follows that we have

P

(
σ

J1,kK
N

λN
> t

∣∣∣ Eck
)

= P
(
σN
λN

> t
∣∣∣ Eck) .

From this we get that, for any
⌈
N
2

⌉
≤ k ≤ N ,
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∣∣∣∣∣P
(
σ

J1,kK
N

λN
> t

)
− P

(
σN
λN

> t

)∣∣∣∣∣
=

∣∣∣∣∣P
(
σ

J1,kK
N

λN
> t

∣∣∣ Ek
)
− P

(
σN
λN

> t
∣∣∣ Ek)

∣∣∣∣∣ · P(Ek)

≤ P(Ek).

Now since P(Ek) =
(

γ
1+γ

)k
≤
(

γ
1+γ

)N
2
for any k ≥

⌈
N
2

⌉
we get the following bound

N∑
k=dN2 e

∣∣∣∣∣P
(
σ

J1,kK
N

λN
> t

)
− P

(
σN
λN

> t

)∣∣∣∣∣ ≤ N

2

(
γ

1 + γ

)N
2

,

which goes to zero as N goes to in�nity, so that we can �nd some N1 such that (5.4) is
satis�ed for any N ≥ N1.

We now turn to (5.5). We will use a coupling. Let (ζ̃N (t))t≥0 be the process de�ned as
follows. For t < σN the process is simply equal to ζN (t). Now suppose i ∈ J1, NK is the last
neuron active in (ζN (t))t≥0 before the extinction at σN , then when i leaks in (ζN (t))t≥0,
instead of leaking in (ζ̃N (t))t≥0 it spikes. Then the dynamic of (ζ̃N (t))t≥0 is the same as
the dynamic of the process (ζN (t))t≥0 with the only di�erence that whenever there is only
one neuron remaining it doesn't leak, and spike at rate 1 + γ, so that there is no extinction
for this stochastic process. The reason for asking that the last neuron spike at rate 1 + γ
instead of simply 1 is that if X and Y are two independent random variable exponentially
distributed with rate 1 and γ respectively, then one can easily compute that the law of X
conditioned onX ≤ Y is an exponential distribution of rate 1+γ. Now for any 1 ≤ k ≤

⌊
N
2

⌋
,

we have

P
(
|ζN (λNs)| = k

)
= P

(
|ζN (λNs)| = k

∣∣ σN > λNs
)
P
(
σN > λNs

)
= P

(
|ζ̃N (λNs)| = k

∣∣ σN > λNs
)
P
(
σN > λNs

)
≤ P

(
|ζ̃N (λNs)| = k

)
,

(5.6)

so that it will be su�cient to prove that for N big enough we have

bN2 c∑
k=1

P
(
|ζ̃N (λNs)| = k

)
< ε. (5.7)

One can easily see that the process (|ζ̃N (t)|)t≥0, that is to say the process counting the
number of particles at any time t, is a Markov jump process taking value in J1, NK, which



5.2. Proof of Theorem 5.1.1 59

transition diagram is given in Figure 5.1.

N

N − 1

N − 2

N − 3

2

1

N(1 + γ)

(N − 1)γ

(N − 2)γ

2γ

(N − 2)

(N − 3)

2

1 + γ

.

.

.

Figure 5.1: The transition diagram of the Markov jump process (ζ̃N (t))t≥0.

We would like to compute an invariant measure for this chain, so that we need to solve
the following equation for µ.

µQ = 0,

where Q is the transition intensities matrix, given by

Q =



−(1 + γ) 0 0 · · · 0 1 + γ 0
2γ −2(1 + γ) 0 · · · 0 2 0
0 3γ −3(1 + γ) · · · 0 3 0
...

...
... · · ·

...
...

...
...

0 0 0 · · · −(N − 2)(1 + γ) N − 2 0
0 0 0 · · · (N − 1)γ −(N − 1)γ 0
0 0 0 · · · 0 N(1 + γ) −N(1 + γ)


.
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This is the same as the following system of linear equations.



−(1 + γ)µ1 + 2γµ2 = 0,

−2(1 + γ)µ2 + 3γµ3 = 0,
...

−(N − 2)(1 + γ)µN−2 + (N − 1)γµN−1 = 0,

(1 + γ)µ1 + 2µ2 + 3µ3 + . . .+ (N − 2)µN−2 − (N − 1)γµN−1 +N(1 + γ)µN = 0,

−N(1 + γ)µN = 0.

(5.8)

Solving the system from top to bottom, we get that, for any n ∈ J2, N − 1K

µn =
(1 + γ)n−1

nγn−1
µ1. (5.9)

Moreover µN = 0. Now from (5.9) and from the fact that the elements of µ need to sum
up to 1 we get

µ1 =

(
N−1∑
n=1

(1 + γ)n−1

nγn−1

)−1

.

Disregarding all terms in the sum but the last one we obtain the following bound

µ1 < N

(
1 + γ

γ

)2−N
.

Hence, for any 1 ≤ k ≤
⌊
N
2

⌋
µk < N

(
1 + γ

γ

)k+1−N
.

As a consequence,

bN2 c∑
k=1

µk <
N2

2

(
1 + γ

γ

)1−N
2

. (5.10)

Let
(
ζ̃µN (t)

)
t≥0

denote the process which initial state is chosen according to the invariant
measure µ. By this we mean that a value k ∈ J1, NK is sorted according to the invariant
measure, and that the process then start from the initial state J1, kK. For any t ≥ 0 we have
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the following inequality:

µN−1

bN2 c∑
k=1

P
(∣∣∣ζ̃J1,N−1K

N (t)
∣∣∣ = k

)
≤
bN2 c∑
k=1

P
(
|ζ̃µN (t)| = k

)
. (5.11)

This last inequality gets us closer to our goal but it is still not exactly what we need
as the left hand side involves the process starting from J1, N − 1K while we would like it to
start from the full initial con�guration J1, NK. This little problem is solved as follows. Let
TN be the time of the �rst jump of the process (ζ̃N (t))t≥0, that is to say

TN
def
= inf{t ≥ 0 : |ζ̃N (t)| 6= N}.

Then, for any t ≥ 0 and 1 ≤ k ≤
⌊
N
2

⌋
, the following holds

P
(∣∣∣ζ̃N (t)

∣∣∣ = k
)

= P
(∣∣∣ζ̃J1,N−1K

N

(
(t− TN )+

)∣∣∣ = k
)
, (5.12)

where (t−TN )+ stands for max(0, t−TN ). This last inequality is obtained from Markov
property and the fact that whenever TN > t the events we look at are both of probability
0 for the k we consider (assuming that N ≥ 3).

Now from (5.10), (5.11) and (5.12), we obtain

bN2 c∑
k=1

P
(∣∣∣ζ̃N (λNs)

∣∣∣ = k
)

=

bN2 c∑
k=1

P
(∣∣∣ζ̃J1,N−1K

N

(
(λNs− TN )+

)∣∣∣ = k
)

≤ 1

µN−1

bN2 c∑
k=1

P
(∣∣∣ζ̃µN ((λNs− TN )+

)∣∣∣ = k
)

≤ 1

µN−1

N2

2

(
1 + γ

γ

)1−N
2

.

Moreover from the penultimate line of (5.8) we get

µN−1 >
µ1 + µ2 + µ3 + . . .+ µN−2

γ(N − 1)
.

Furthermore, assuming that N is su�ciently big for γ(N − 1) to be greater than one,
and using again the fact that the elements of µ need to sum up to 1, we obtain

µN−1 +
µ1 + µ2 + µ3 + ...+ µN−2

γ(N − 1)
≥ 1

γ(N − 1)
.
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Combining the two previous equations we have

µN−1 ≥
1

2γ(N − 1)
.

Hence, we �nally get

bN2 c∑
k=1

P
(
|ζ̃N (λNs)| = k

)
≤ 2γ(N − 1)

N2

2

(
1 + γ

γ

)1−N
2

≤ (1 + γ)N3

(
1 + γ

γ

)−N
2

.

And the last bound goes to zero as N goes to in�nity, so that we can �nd some N2 such
that (5.5) is satis�ed for any N ≥ N2.

Finally (5.4) and (5.5) are both satis�ed for any N greater than max(N1, N2) so that
the proof is over. �

From Proposition 5.2.1 we obtain the following corollary.

Corollary 5.2.2 For any γ > 0 the following convergence holds

σN
λN

D−→
N→∞

E (1). (5.13)

Proof: The proof, which relies on a density argument and on the monotonicity of the

function t 7→ P
(
σN
λN

> t
)
, is exactly identical to the proof of Corollary 3.7.2. �

It only remains to prove that we can replace λN by E (σN ) in Corollary 5.2.2. It follows
from the proposition below.

Proposition 5.2.3 For any γ > 0 the following convergence holds

lim
N→∞

E (σN )

λN
= 1.

Proof: From the following identity,[
P
(
σN
λN

> s+ t

)
− P

(
σN
λN

> s

)
P
(
σN
λN

> t

)]
=

N∑
k=1

[
P

(
σ

J1,kK
N

λN
> t

)
− P

(
σN
λN

> t

)]
· P
(
|ζN (λNs)| = k

)
,
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and from the fact that for any t ≥ 0 and k ∈ J1, NK we have

P

(
σ

J1,kK
N

λN
> t

)
≤ P

(
σN
λN

> t

)
,

it follows that

P
(
σN
λN

> s+ t

)
≤ P

(
σN
λN

> s

)
P
(
σN
λN

> t

)
.

Moreover from the de�nition of λN we have that for any n ∈ N

P
(
τN
λN

> n

)
≤ e−n.

Therefore, for any t ≥ 0 we have

P
(
τN
λN

> t

)
≤ e−btc.

Using the Dominated Convergence Theorem and (5.2.2) we �nally get

lim
N→∞

E (τN )

λN
= lim

N→∞

∫ ∞
0

P
(
τN
λN

> t

)
dt

=

∫ ∞
0

lim
N→∞

P
(
τN
λN

> t

)
dt

=

∫ ∞
0

e−tdt

= 1.

And the proof is over. �
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Chapter 6

Conclusion and perspectives

Throughout this thesis, we've stated and proven a series of results that suggest an
interesting dichotomy with respect to metastability between loosely connected graph, such
as the one-dimensional lattice with nearest-neighbors interaction, and highly connected
graphs, such as the complete graph. In the �rst case the system is metastable only for small
values of γ, while in the second case the system is metastable for any value of γ. This
dichotomy is of course mostly theoretical, as the results we obtained are asymptotical while
actual neural network are obviously �nite. We can intuitively see that this di�erence comes
from the fact that in the complete graph setting, the connectivity of the graph grows with
the number of neurons N , raising the e�ect of spikes as well, so that the e�ect of leaks is
proportionally diminished. At some point the spikes get the advantage, making a series of
fatal leaks less probable and therefore setting the stage for metastability to arise1.

Yet simulations show that the exponential approximation is actually quite good for
relatively small networks (see Figure 1.2 and Figure 1.3 for the one dimensional lattice case),
as a matter of fact N = 100 is already way su�cient to observe a metastable behavior in
the lattice setting for γ < 0.4 as well as in the complete graph setting for any reasonable
γ (i.e. of the same order of magnitude as the spiking rate). Knowing that the number of
neurons in actual biological neural networks varies from few hundreds [WSTB86] to billions
[LAAMP12], it means that if the parameter are chosen wisely, metastability can be observed
in our model for any realistic size. It also suggests that, if we assume that neural networks
need to behave in a metastable way in order to process information e�ciently, it forces a
delicate equilibrium between their di�erent parameters (i.e. tendency to spike, tendency
to leak, connectivity and size of the network), which would be interesting to investigate
empirically.

The actual organization of the neurons in the cortex is notoriously complicated, and a
full comprehension of the underlying structures of the brain are still out of reach from the
neuroscience community (we refer to [SPO11] for a general review on this topic). While very
speci�c networks, such as the retina neurons, actually present an interaction structure of the
one-dimensional lattice type [BS98], it is questionable whether any networks could be wired

1This by the way highlight the fact that, while we de�ned our process to depend only one the parameter,

the rate γ corresponding to the leaks, letting the spike rate be equal to 1, the only thing that really matters

is actually their ratio.
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in a complete fashion. Yet, in the family of connected graphs, the one-dimensional lattice
and the complete graph are at the two opposite side of the spectrum, which let us think
that, since the metastability holds for both of them, any graph in between should behave in
a metastable fashion provided that suitable values are chosen for the parameters. A possible
continuation fo this work would therefore be to investigate these graphs in between. May be
the one that come to mind most naturally would be the tree. The one-dimensional lattice is
actually the regular tree of minimal degree, so that some of the techniques applicable in the
lattice might be generalized to regular trees of any degree without too much complications.
From here we might be able to prove metastability for any (non-regular) tree.

Moreover it is now well-known that the structure of the brain is not hard-wired (a feature
called synaptic plasticity), so that the most interesting graphs we might consider are actually
random graphs. The �rst we might think of is the Erdös-Rényi graph [ER59]. Indeed it is
well-known that the super-critical ER graph is locally like a tree, so that if we are able to
prove the metastability in the tree it is unlikely that we are not able to prove it for ER graph.
Other random graphs of interest, often considered as good candidates for biological neural
networks in the neuroscienti�c literature, are Power-law graphs (see for example [GL05])
and Small-world graphs (see [BB06]). A technical problem which might arise on our way
is the question of how to de�ne a sequence of random graphs in a meaningful way, so that
we can formulate the possible metastability of the process in terms of a convergence of the
time of extinction. While it was trivial for the non-random graph we worked with, it might
not be so simple in the case of a random graph.

An other natural question to ask is whether similar results can be obtained for other
closely or not so closely related models. The �rst option that one might consider is to work
on the same model but with a di�erent activation function φ. Indeed, the de�nition of the
model as it is given in Section 1.2 include an activation function, that was then kind of
forgotten in the rest of this thesis as we always assumed that φ was the indicator function
1x>0. This choice is mathematically convenient as it turns our model into an interacting
particle systems, which allows us to use an already well developed literature to serve our
purposes, but it is not the most realistic from a biological point of view. Linear or sigmoid
functions could be interesting candidates for φ.

The second option is to consider other models related to the original Galves-Löcherbach
model. As the author is writing these lines a pre-print [LM20] has been self-archived on
arxiv.org, addressing metastability for a version of the Galves-Löcherbach model in which
the leakage e�ect is modeled by a continuous decrease of some �xed rate, with an interaction
of the complete setting type. This last work nonetheless, as well as our, still relies on simpli-
fying assumptions such that the homogeneity of the synaptic strength (a spike a�ects every
post-synaptic neurons equally), the absence of inhibitory neurons (a spike never results in a
decrease of membrane potential for the post-synaptic neurons), and the absence of electrical
synapses, a mechanism induces by so-called gap-junction channels which results in a con-
tinuous sharing of membrane potential, and therefore tends to push neural networks toward
their average membrane potential value. The next step would be to relax these assumptions
in order to study metastability in models of higher complexity, considering models such as
the one presented in [DO14] for example, and to try to determine, if metastability arises,
for which values of the various parameters it does so.



Appendix A

Theory of duality

We brie�y recall the main results about duality for interacting particles systems. All the
proof are omitted, and they can be found in [BG77]. In the following S is any countable set.

De�nition A.0.1 A map π : P(S) 7→P(S) is called additive if for all j ∈ S, and for
all A ∈P(S) we have

π(A) =
⋃
i∈A

π({i}).

We de�ne the notion of dual maps.

De�nition A.0.2 Let π : P(S) 7→ P(S) and π′ : P(S) 7→ P(S). These maps are
called dual if for any sets A,B ∈P(S) we have the following

1π(A)∩B = 1A∩π′(B). (A.1)

We have the following result

Proposition A.0.3 Let π : P(S) 7→ P(S). A necessary and su�cient condition for
the existence of a dual map π′ (that is a map satisfying (A.1)) is for π to be additive. This
dual map is unique and is given by the following equations

for all i ∈ S, π′({i}) = {j ∈ S : i ∈ π({j})} ,

and

for any A ∈P(S), π′(A) =
⋃
i∈A

π′({i}).

Now we de�ne Σ to be the set of applications π from P(S) to P(S) satisfying the
following properties
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1. π is additive,

2. π({i}) is a �nite set for any i ∈ S,

3. {i ∈ S : π({i}) 6= {i}} is a �nite set for any i ∈ S as well.

Remark A.0.4 It is easy to verify that π ∈ Σ if and only if π′ ∈ Σ.

For some application λ : Σ 7→ R+ we also de�ne the two following in�nitesimal genera-
tors. Let L and L ′ be de�ned for any cylinder function f by

L f =
∑
π∈Σ

λ(π)(f ◦ π − f) and L ′f =
∑
π∈Σ

λ(π)(f ◦ π′ − f).

For any i ∈ S we also de�ne the following set

Ii = {π ∈ Σ : π({i}) 6= {i}} .

Moreover we de�ne the following quantities

α = sup
i∈S

∑
π∈Ii

λ(π) and α′ = sup
i∈S

∑
π:π′∈Ii

λ(π),

as well as

β = sup
i∈S

∑
π∈Σ

λ(π) (|π({i})| − 1) and β′ = sup
i∈S

∑
π∈Σ

λ(π)
(∣∣π′({i})∣∣− 1

)
.

Now we have the following central result

Theorem A.0.5 Assume that α, α′, β, β′ < ∞. Then for any A ∈ P(S) there exists
two Markov processes (ξA(t))t≥0 and (ξ′A(t))t≥0 on P(S) with initial state A and having
generator L and L ′ respectively. These processes are additive in the sense that

ξA(t) =
⋃
i∈A

ξi(t) and ξ′A(t) =
⋃
i∈A

ξ′i(t).

Moreover, they verify the duality property, that is, for any A,B ∈ P(S) such that at least
one is �nite, we have

P
(
ξA(t) ∩B 6= ∅

)
= P

(
ξ′B(t) ∩A 6= ∅

)
.
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Some usefull results

B.1 A measure determining set of functions

It was claimed in Section 3.5.1 that the set of continuous and increasing function on
{0, 1}Z is measure determining. While it seems to be considered as a somewhat classical
result in the literature, we were unable to �nd a proof anywhere so that we wrote our own.

Proposition B.1.1 Let µ1 and µ2 be two probability measures on the measurable space
({0, 1}Z,B({0, 1}Z)), where B({0, 1}Z) denotes the borelian σ-algebra on {0, 1}Z. Suppose
that for any B({0, 1}Z))-measurable, continuous and increasing function f : {0, 1}Z 7→ R
we have the following equality ∫

fdµ1 =

∫
fdµ2,

then µ1 = µ2.

Proof: Fix an arbitrary B ∈ B({0, 1}Z) di�erent from the empty set. For any n ≥ 0
de�ne the function fn on {0, 1}Z by

fn(x) = 1{x[−n,n] ≥ b[−n,n] for some b ∈ B},

where for any x ∈ {0, 1}Z, x[−n,n] is de�ned as follows

x[−n,n](i) =

{
x(i) if i ∈ [−n, n],

0 otherwise.

The function fn can be written as follows
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fn(x) = gn(x) + hn(x)

def
= 1{x[−n,n] = b[−n,n] for some b ∈ B}+ 1{x[−n,n] > b[−n,n] for some b ∈ B}.

Notice that fn is a continuous and increasing function, so that by hypothesis we have∫
fndµ1 =

∫
fndµ2,

which can be written ∫
gndµ1 +

∫
hndµ1 =

∫
gndµ2 +

∫
hndµ2.

Now hn is a continuous and increasing function as well, so that the two integrals involving
hn simply cancel out in the previous equation, and we are left with∫

gndµ1 =

∫
gndµ2.

Finally we have limn→∞ gn(x) = 1{x ∈ B}, so that by dominated convergence theorem

µ1(B) = lim
n→∞

∫
gndµ1 = lim

n→∞

∫
gndµ2 = µ2(B),

which ends the proof. �

B.2 Fekete lemma

Fekete lemma was initially stated for subadditive sequences in [FEK23], it can be ex-
tended to locally bounded superadditive real functions as follows.

Lemma B.2.1 Let f : R+ 7→ R be a locally bounded function such that for any s, t ≥ 0
the following holds

f(s+ t) ≥ f(s) + f(t).

Then we have the following

lim
t→∞

f(t)

t
= sup

t>0

f(t)

t
.
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Proof: Let �x some s > 0. Then any t ≥ 0 can be written t = q(t)s+r(t), where q(t) (the
"quotient") is a non-negative integer and r(t) (the "remaining") belongs to [0, s[. Iterating
the super-additivity property we have f

(
q(t)s

)
≥ q(t)f (s) so that

f(t) = f
(
q(t)s+ r(t)

)
≥ q(t)f(s) + f

(
r(t)

)
.

Now, using the assumption that f is locally bounded, we have

q(t)f(s) + f
(
r(t)

)
t

−→
t→∞

f(s)

s
,

from what it follows that

lim inf
t→∞

f(t)

t
≥ f(s)

s
.

The inequality above being true for any s > 0 we get

lim inf
t→∞

f(t)

t
≥ sup

t>0

f(t)

t
.

The result then follows from the inequality above together with the trivial inequality

sup
t>0

f(t)

t
≥ lim sup

t→∞

f(t)

t
≥ lim inf

t→∞

f(t)

t
.

�

B.3 Continuous time branching process

At time 0 there is a single individual. Two independent exponential random clocks of
parameter λ and γ respectively are attached to this individual. If the rate γ clock rings before
the other one, then the individual dies. In the contrary case the individual is replaced by two
other individuals. Every new individual gets his two own independent exponential clocks of
parameter λ and γ and so on.

We denote by (Zt)t≥0 the process corresponding to the number of individuals of the
population along the time. Note that by hypothesis we have Z0 = 1. We have the following
result, which give the explicit value of the expectation at any time t ≥ 0.

Proposition B.3.1 For any γ > 0, and for any t ≥ 0, we have

E (Zt) = e−(γ−λ)t.

Proof: The proof, which only involves solving an ordinary di�erential equation, is the
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same as the proof of Theorem 1.1 in chapter 8 of [SCH14]. �
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