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Abstract

We consider a stochastic system of spiking neurons which was previously proven to present

a metastable behavior for a suitable choice of the parameter, in the sense that the time of

extinction is asymptotically memory-less when the number of components in the system goes

to ∞. In the present article we complete this work by showing that, previous to extinction, the

system tends to stabilize in the sense that temporal means taken on an appropriate time scale

converge in probability to some �xed value. This property is sometime called thermalization.
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1 Introduction

Informally the model is as follows. Each element in the system (a neuron) is associated to a
random variable called its membrane potential. Each neuron is also associated to a point process
which intensity varies across time depending on the current value of the membrane potentials,
representing the spiking times, and to another point process (which is Poisson of some �xed rate
γ ≥ 0) representing the leakage phenomenon, that is, the drift of the membrane potential toward its
resting value caused by the natural di�usion of ions through de membrane when some equilibrium
has not been reached. Thus, unlike in the original model the present one was inspired from,
these leaks occurs at discrete times at which the membrane potential is reset to its resting value
(conventionally set to 0). Moreover, like in the original model, the membrane potential of any
given neuron is also reset to the resting value whenever this neuron spikes. Furthermore all the
neurons are excitatory, with the same synaptic weight (conventionally set to 1). We give a formal
de�nition of the system in the next section.

This model was proposed in [7], as one of the continuous time versions of the model introduced
in [8], sometimes called the Galves-Löcherbach model, or simply GL model. It was studied for
the in�nite one-dimensional lattice instantiation in which the neurons are indexed by Z and each
neuron is connected to its immediate neighbors, on the right and on the left, and was proven to
present a phase transition with respect to the parameter γ: there exists a critical threshold for
this parameter such that if γ is taken above it then each neuron stop emitting spikes in �nite time
almost surely, while if γ is taken below the threshold then each neuron has a positive probability
of emitting spikes forever.

Then the study of the metastable properties of this model was initiated in [1], in an attempt to
�ll the gap for a mathematical treatment of the subject of metastability in neuroscience, which is
central but rarely treated from the rigorous and microscopical perspective of statistical mechanics
(on the role of the concept of metastability in neuroscience, which is out of the scope of this article,
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see for example [14]). It was proven there that in at least a sub-region of the sub-critical region,
if we consider the �nite version of the model described above with n neurons (i.e. the neurons are
indexed on a �nite windows such as Z ∩ [−n, n]) then the instant of the last spike of the system
(which is almost surely �nite) converges to an exponential random variable as n diverges. It is the
�rst of the two characteristic properties of metastable dynamics as formalized in the seminal paper
[4]. Then this type of convergence was also proved to hold for other versions of the GL model (see
[2] and [12]). In the present article the result of [1] is slightly improved in Section 6, as a side
consequence of the analysis that will be conducted up to that point is that the convergence toward
an exponential actually holds in the whole sub-critical region.

Our main result (Theorem 2.1) complete the study of the metastable properties of this system
by showing that, before extinction, the spiking activity stabilizes in a dynamic which resemble
stationarity. This is the second of the two properties characterizing metastability, sometime called
thermalization (see [13]). More precisely we show that in the �nite version mentioned above the
temporal averages of spikes along time, computed on a suitable time scale, converge in probability
as n diverges to the asymptotic spatial average of active neurons in the in�nite system. In that
sense it can also be seen as a result of ergodicity. One of the important ideas of the proof of
the main result is to consider an auxiliary process, namely the spiking rate process, which is an
interacting particle system taking value in {0, 1}Z, as well as its dual (in the sense introduced by
T. Harris in [9]). Then exploiting interesting properties of this auxiliary process allows us to derive
the proof of our central result.

The paper is organized as follows. In Section 2 we introduce formally our model and state
the main result. In Section 3 we introduce the auxiliary process as well as its dual; we also list
previously obtained results concerning these processes which will be important in the sequel. In
Section 4 we obtain a result about the drift of the right-most component of the dual process. This
result is then used in Section 5 to prove that the auxiliary process has exponentially decaying time
correlations, which is a crucial ingredient of the proof of the main result. Finally this main result
is proven in Section 6.

2 De�nition of the model and main result

The general model considered in this work is as follows. Let I be a �nite or countable set repre-
senting the neurons, and to each i ∈ I associate a set Vi ⊂ S of presynaptic neurons. Each
neuron i ∈ I has a membrane potential evolving over time, represented by a stochastic process
which takes its values in the set N of non-negative integers and which is denoted (Xi(t))t≥0. The

evolution of (Xi(t))t≥0 depends on two type of point processes, denoted (N†i (t))t≥0 and (Ni(t))t≥0
for each neuron i ∈ I. (N†i (t))t≥0 is a Poisson process of some parameter γ, representing the leak
times. At any of these leak times the membrane potential of the neuron concerned is reset to 0.
Finally (Ni(t))t≥0 represents the spiking times, and its in�nitesimal rate at time t is given by
φ(Xi(t)), where φ is some rate function. When a neuron spikes its membrane potential is reset to
0 and the membrane potentials of all of its postsynaptic neurons (that is the neurons of the set
{j : i ∈ Vj}) are increased by one. All the point processes involved are assumed to be mutually
independent.

Mathematically, beside asking that (N†i (t))t≥0 be a Poisson process of some parameter γ, this is
the same as saying that (Ni(t))t≥0 is the point process characterized by the two following equations

E(Ni(t)−Ni(s)|Fs) =

∫ t

s

E(φ(Xi(u))|Fs)du

where

Xi(t) =
∑
j∈Vi

∫
]Li(t),t[

dNj(s),

Li(t) being the time of the last event a�ecting neuron i before time t, that is,

Li(t) = sup
{
s ≤ t : Ni({s}) = 1 or N†i ({s}) = 1

}
.
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(Ft)t≥0 is the standard �ltration generated by the family {Ni(s), N†i (s), s ≤ t, i ∈ S}.

We continue the study initiated in [7] and [1], and we study the speci�c case in which the
activation function is simply a hard threshold of the form φ(x) = 1x>0 and the spatial structure
of the network is given by a nearest-neighbor interaction on the one-dimensional lattice, that is we
set I = Z and Vi = {i − 1, i + 1}. As stated in the introduction, it was proven in [7] that there
exists some critical value 0 < γc <∞ such that, assuming that the system start in a state in which
every neuron has a positive membrane potential, then for any i ∈ I

P
(
Ni([0,∞[) <∞

)
= 1 if γ > γc,

while

P
(
Ni([0,∞[) =∞

)
> 0 if γ < γc.

This in�nite system is interesting in itself but our main concern in this article (as in [1]) is
its �nite counterpart, that is the system in which the neurons are indexed on In = J−n, nK for
some n ∈ N (Here and in the sequel J−n, nK is a short-hand for Z ∩ [−n, n]) and in which the sets
of presynaptic neurons for each neuron i ∈ In is given by Vn,i = {−i, i} ∩ J−n, nK. The reason
for introducing the in�nite system and actually studying some of its properties (Sections 4 and
5) is that these are extremely useful in order to obtain the �nite-case result we are interested in.
What we prove is that in this �nite system, in the sub-critical regime, and if n is big enough, then
counting the number of spikes occurring in a given time interval before extinction, for a given subset
of neurons of interest in the system, shall give a number which with high probability is close to
some �xed value, which depends only on the parameter γ (and of course of the number of neurons
in the subset considered). This property captures the pseudo-stationarity which is characteristic
of metastable systems.

More precisely, let F ⊂ Z with |F | <∞. Then we de�ne, for any t, R ∈ R+ and for any n ≥ 0,
the following quantity

N̂n
R (t, F ) =

1

R

∑
i∈F∩In

Ni ([t, t+R]) ,

where the superscript n here indicates that we are considering the �nite system de�ned with respect
to the In and Vn,i de�ned above. N̂n

R (t, F ) is the average number of spikes emitted by the neurons
in F on a time interval of length R, starting the enumeration a time t. Our main result is the
following theorem.

Theorem 2.1. Suppose 0 < γ < γc and let (Rn)n≥0 be an increasing sequence of positive real
numbers satisfying

Rn −→
n→∞

+∞ and
Rn

E (τn)
−→
n→∞

0.

There exists some 0 < ρ < 1 (which depends only on γ) such that for any t ≥ 0

N̂n
Rn (t, F )

P−→
n→∞

|F | · ρ.

3 The auxiliary process and its dual

Consider the in�nite process introduced above, with I = Z and Vi = {i−1, i+1}. For any i ∈ Z and
t ≥ 0 we write ξi(t) = 1Xi(t)>0, and ξ(t) = (ξj(t))j∈Z. The resulting auxiliary process (ξ(t))t≥0
gives the state of each neuron at any time among the two possibilities: active or susceptible to
spike if ξi(t) = 1, and quiescent or not susceptible to spike if ξi(t) = 0. This stochastic process
is an interacting particle systems (see [11]) and it's dynamic can be described as follows: any
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active neuron spikes at rate 1, and when is does so it "activates" its two neighbors (in case they
weren't already) while it immediately turns itself quiescent, moreover it also spontaneously becomes
quiescent at rate γ because of the leakage. In a more formal way (ξ(t))t≥0 is the Markovian process
on {0, 1}Z which in�nitesimal generator is given by

L f(η) = γ
∑
i∈Z

(
f(π†i (η))− f(η)

)
+
∑
i∈Z

ηi

(
f(πi(η))− f(η)

)
, (3.1)

where f : {0, 1}Z → R is a cylinder function1 and the π†i 's and πi's are maps from {0, 1}Z to {0, 1}Z
de�ned for any i ∈ Z as follows:

(
π†i (η)

)
j

=

{
0 if j = i,

ηj otherwise,
(3.2)

and

(
πi(η)

)
j

=


0 if j = i,

max(ηi, ηj) if j ∈ {i− 1, i+ 1},
ηj otherwise.

(3.3)

3.1 Graphical construction

It is possible to use a graphical construction of the type of the construction introduced by Harris
in [10] to propose an alternative de�nition of the auxiliary process. The construction is as follows.

For any neuron i ∈ Z, we let (N∗i (t))t≥0 and (N†i (t))t≥0 be two independent homogeneous Poisson

processes with respective intensity 1 and γ. Let (T ∗i,n)n≥0 and (T †i,n)n≥0 be their respective jump
times. All the Poisson processes are assumed to be mutually independent and we let (Ω,F ,P) be
the probability space on which these Poisson processes are de�ned.

Now we adjoin the following structure to the time-space diagram Z× R+:

I for all i ∈ Z and n ∈ N put a `δ' mark at the point (i, T †i,n),

I for all i ∈ Z and n ∈ N put an arrow pointing from (i, T ∗i,n) to (i + 1, T ∗i,n) and another
pointing from (i, T ∗i,n) to (i− 1, T ∗i,n).

We obtain a random structure that we denote G , which consists of the time-space diagram
Z×R augmented by the set of `δ' marks and horizontal arrows. Then for any i, j ∈ Z and t < s we
call a path from (i, t) to (j, s) on G any alternated sequence of contiguous closed time segments
and arrows, starting and ending by a time segment (possibly reduced to a single point), such that
(i, t) is the bottom endpoint of the �rst segment, and (j, s) the top endpoint of the last segment.
Moreover we say that a path is valid if

(i) none of the time segments contains a `δ' mark,

(ii) none of the time segments contains a (i, T ∗i,n) point in its interior or at its bottom endpoint.

In other words a path is deemed valid if, as you goes upward along this path, you never
encounter a `δ' mark neither you cross the rear side of an arrow. For any two points i and j in Z
we write (i, t) −→ (j, s) if there is a valid path from (i, t) to (j, s). For any two sets A,B ⊂ Z we
also write A × t −→ (j, s) (resp. (i, t) −→ B × s) if there exists some i in A (resp. some j in B)
such that (i, t) −→ (j, s), and we write A× t −→ B × s when (i, t) −→ (j, s) for i ∈ A and j ∈ B.

1Here and in the rest of the paper we call cylinder function any function f : {0, 1}Z → R which only depends on

a �nite number of sites. The set S ⊂ Z of the sites on which f depends is called the support of f .
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With this construction we can easily give the following characterization of our stochastic pro-
cess2. For any A ∈P(Z), and for any t ≥ 0 :

ξA(t) = {j ∈ Z : A× 0 −→ (j, t)}.

Then (ξA(t))t≥0 is the process with generator (3.1) and initial state ξA(0) = A.

Notice that once all the neurons are quiescent the system will remains quiescent for eternity. In
other words ∅ is an absorbing state. Therefore we can de�ne the extinction time of the system.
For any A ∈P(Z) the time of extinction, denoted τA, is de�ned as follows

τA = inf{t ≥ 0 : ξA(t) = ∅}.

3.2 Dual process

It is possible to de�ne a dual process for (ξ(t))t≥0, which is particularly useful for the study of
the original process. Again, for any i ∈ Z, let's consider two independent homogeneous Poisson
processes (Ñ∗i (t))t≥0 and (Ñ†i (t))t≥0 with intensity 1 and γ respectively, and let (T̃ ∗i,n)n≥0 and

(T̃ †i,n)n≥0 be their respective jump times. As previously all the Poisson processes are assumed to
be mutually independent.

The time-space diagram Z× R+ is then augmented in order to obtain the dual structure G̃ as
follows:

I for all i ∈ Z and n ∈ N put a `δ' mark at the point (i, T̃ †i,n),

I for all i ∈ Z and n ∈ N put an arrow pointing from (i + 1, T̃ ∗i,n) to (i, T̃ ∗i,n) and another

pointing from (i− 1, T̃ ∗i,n) to (i, T̃ ∗i,n).

Now we say that a path in G̃ is a dual-valid path if it satis�es the following constraints:

(i) none of the time segments contains a `δ' mark,

(ii) none of the time segments contains a (i, T̃ ∗i,n) point in its interior or at its top endpoint.

In other words a path is dual-valid if, as you goes upward along this path, you never encounter
a `δ' mark neither you cross the tip of an arrow. For any two points i and j in Z we write

(i, t)
dual−→ (j, s) if there is a dual-valid path from (i, t) to (j, s), and we adopt similar notations

when sets are considered instead of points.

Then for any A ∈P(Z) and for any t ≥ 0 we write

ηA(t) = {j ∈ Z : A× 0
dual−→ (j, t)}.

The process (η(t))t≥0 thus de�ned is the dual of (ξ(t))t≥0. Its dynamic can be brie�y described
as follows: an active neuron "activates" its neighbors at rate 1 (on the left and on the right
independently), while it turns itself quiescent at rate γ or 1+γ depending on whether it has active
neighbors or not.

We brie�y explain the point of introducing a dual process, and we refer to [9] and [3] for more
details about duality. The crucial point is that we can relate the initial process (ξ(t))t≥0 and its

2Notice that with this new de�nition the process is de�ned on P(Z) instead of {0, 1}Z. It is of course only a

matter of notation, as any element η of {0, 1}Z can be bijectively mapped to an element A of P(Z) via the relation

A = {i ∈ Z such that ηi = 1}. In practice we will indi�erently use both ways.
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dual in the following way. We �x some s ∈ R+, and for any 0 ≤ t ≤ s and A ∈ P(Z) we de�ne
the following random variable on P(Z) via the random graph G of the previous section

ζA(t) = {i ∈ Z : (i, s− t) −→ A× s}. (3.4)

That way it is easy to see that (ζ(t))t∈[0,s] is the dual process (η(t))t≥0 restricted to the time
interval [0, s], but built on the probability space (Ω,F ,P) of the orginal process (ξ(t))t≥0. We
call this way of de�ning the dual process by a coupling with the initial process�with the time
reversed�the backward version of the dual process. Moreover it is straightforward to check that
for any A,B ∈P(Z) and any t ≥ 0 the following holds

{ξA(s) ∩B 6= ∅} = {ζB(s) ∩A 6= ∅}. (3.5)

Thus, the following proposition holds.

Proposition 3.1. For any A,B ∈P(Z), and t ≥ 0 we have

P
(
ξA(t) ∩B 6= ∅

)
= P

(
ηB(t) ∩A 6= ∅

)
.

For any A ∈P(Z) we denote by σA the time of extinction of the dual process

σA = inf{t ≥ 0 : ηA(t) = ∅}.

This time of extinction will be of great importance, as an important ingredient of the proof of
the main theorem consists in using the exponential decay of the time correlations of the original
interacting particle system (Theorem 5.5), which is proven using the duality property and an
exponential bound on this extinction time (Theorem 5.3).

3.3 Important properties of the auxiliary process and its dual

In this section we summarize some of the properties that have already been proven for the inter-
acting particle system and its dual. In order to avoid redundancy most of the properties are stated
only for the process (ξ(t))t≥0 but they hold for the dual process (η(t))t≥0 as well. Moreover the
phase transition property is stated in terms of the extinction time of (η(t))t≥0. The proofs can
be found in Section 4 of [1]. Below, and from now on, we will use some new notation. The time
will sometimes be written as a subscript if it is more suitable, writing (ξt)t≥0 instead of (ξ(t))t≥0.
We sometimes write ξ ≡ 0 (or η ≡ 0) for the state in which all neurons are quiescent, and ξ ≡ 1
(or η ≡ 1) for the state in which all neurons are active. When the initial state is a singleton we
drop the curly bracket, writing for example σ0 instead of σ{0}. When the initial state is the whole
lattice Z we will omit the superscript, writing simply ξ(t) for ξZ(t). Moreover the state space
{0, 1}Z is associated with the partial order relation de�ned for any ξ, η ∈ {0, 1}Z by: ξ ≤ η if and
only if ξi ≤ ηi for all i ∈ Z. Whenever we say that a function on {0, 1}Z is monotonous, it is to
be understood with respect to this partial order. Finally, for any probability measure ν on {0, 1}Z
(associated with its standard Borel σ-algebra) and for any measurable function f on {0, 1}Z we
write ν(f) =

∫
fdν.

(i) Additivity: From the graphical constructions we immediately obtain that for any A,B ∈
P(Z) and for any t ≥ 0 the following holds

ξA∪B(t) = ξA(t) ∪ ξB(t). (3.6)

(ii) Monotonicity: The previous property implies that for any A,B ∈ P(Z) such that A ⊂ B
and for any t ≥ 0

ξA(t) ⊂ ξB(t). (3.7)

(iii) Attractiveness: By de�nition an interacting particle system on {0, 1}Z with semi-group
(S(t))t≥0 is attractive if for any increasing function on {0, 1}Z the function S(t)f is increasing
for any t ≥ 0. For any ξ, η ∈ {0, 1}Z satisfying ξ ≤ η it is immediate using monotonicity that
for any increasing f and for any t ≥ 0 we have Eξ (f(ξt)) ≤ Eη (f(ξt)), so that our system is
indeed attractive.
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(iv) Translation invariance: It is clear from the graphical construction that the law of the
process does not change if the time-space diagram is translated to the right or to the left.

(v) Phase transition: The phase transition stated in Section 2 can be restated in term of the
dual process:

P
(
σ0 = +∞

)
> 0 if γ < γc

and
P
(
σ0 = +∞

)
= 0 if γ > γc.

(vi) Invariant measures: If γ < γc, then there exists a non-trivial invariant measure (in the
sense that it doesn't give mass 1 to ξ ≡ 0) for (ξt)t≥0, which corresponds to the weak limit
of ξt when t diverges, and which we denote µ. There is an analogous invariant measure for
the dual process (ηt)t≥0 which we denote µ̃.

(vii) Stochastic monotonicity: The convergence toward µ is monotonous in the sense that for
any continuous and increasing function f : {0, 1}Z → R and for 0 ≤ s < t the following holds

E (f(ξs)) ≥ E (f(ξt)) ≥ µ(f).

(viii) Positive density: De�ne the density of the system3 ρ = µ ({η : η0 = 1}). By phase transi-
tion and duality (Proposition 3.1), if γ < γc then ρ > 0. The same holds for the density of
the dual process ρ̃ = µ̃ ({η : η0 = 1}). While this result isn't proven for the dual in [1], as it
wasn't explicitly needed, it is very easy to prove it using other results proven there, as shown
by the following computation. Let H ⊂ {0, 1}Z and suppose γ < γc, then by Proposition 4.8
from [1]

µ̃(H) ≤ µ̃(η ≡ 0) +
∑
i∈Z

µ̃ ({η ∈ H : ηi = 1}) ≤
∑
i∈Z

ρ̃,

so that if ρ̃ = 0 then µ̃ shall be identically equal to 0, which is obviously a contradiction (to
the fact that it shall be a probability measure for example).

(ix) Spatial ergodicity: The measure µ is spatially ergodic. See Theorem 4.9 in [1] for more
details. While this Theorem is proven only for µ there, it is easy to check that all the
arguments hold for µ̃ as well.

A fact that will be important in the two next sections is that (ξ(t))t≥0 and (η(t))t≥0 fall into
the category of what is called growth models in [5], that is, attractive and translation invariant
systems with ∅ as an absorbing state and �nite range interaction.

4 Preliminary results

In this section we study the drift of the edge of the dual process (η(t))t≥0. The main result is that
in the sub-critical regime the drift is linear, with a positive slope (Proposition 4.4 and Proposition
4.6). This fact will be of importance in order to prove exponential estimates for the time of
extinction and the time correlations.

For any set A ∈P(Z) we write:

rAt = max
{
i ∈ ηAt

}
and lAt = min

{
i ∈ ηAt

}
.

Moreover we write (η−t )t≥0 and (η+t )t≥0 for the dual processes starting from η−0 = K−∞, 0K
and η+0 = J0,+∞J respectively, and for any t ≥ 0 we denote r−t = max

{
i ∈ η−t

}
and l+t =

min
{
i ∈ η+t

}
.

Let's start with the following lemma.

3Notice that, by translation invariance, the fact that we de�ne ρ with respect to neuron 0 is purely conventional.
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Lemma 4.1. For any t ≥ 0, if σ0 > t then:

(i) r0t = r−t and l0t = l+t ,

(ii) η0t = η−t ∩ [l0t , r
0
t ] = η+t ∩ [l0t , r

0
t ],

(iii) and l+s ≤ r−s for every s ≤ t.

Proof. The proof of (i) follows easily from the graphical construction and is quite similar to the
proofs of the three �rst lemmas in Section 5 of [1]. We give a quick sketch here. By set monotonicity
r0t ≤ r−t . Moreover, as r−t ∈ η−t , by de�nition we can �nd a dual-valid path from some i ∈ K−∞, 0K
to r−t . If i = 0 then r−t ∈ η0t so that r0t ≥ r−t and the proof is over. Now if i < 0 then the
dual valid-path from i to r−t has to cross the left border of (η0s)s≥0 somewhere before t. Now the
concatenation of the path following the left border from 0 to the crossing point and the path going
from the crossing point to r−t is a dual-valid path from 0 to r−t , proving again that r0t ≥ r−t , which
ends the proof. Of course the fact that l0t = l+t is then immediate by symmetry.

For (ii) by symmetry we only need to prove η0t = η−t ∩ [l0t , r
0
t ], the proof for the other equality

being obviously identical. The fact that η0t ⊂ η−t ∩ [l0t , r
0
t ] is immediate by monotonicity so that it

su�ces to show the reverse inclusion. This is easily done by the same kind of argument as in the

�rst item. Let j ∈ η−t ∩ [l0t , r
0
t ], then there exists i ∈ K−∞, 0K such that (i, 0)

dual−→ (j, t). If i = 0
then there is nothing to prove, while if i < 0 then the path from i to j has to cross {l0t : t ≥ 0}
somewhere implying that j ∈ η0t .

For the last item notice that if η0t 6= ∅ then η0s 6= ∅ for every s ≤ t so that by (i), for any �xed
s ≤ t

l+s = l0s ≤ r0s = r−s .

Remark 4.2. It is easy to see that in the above lemma one can replace the initial state {0} by
any set A ⊂ Z− such that 0 ∈ A (resp. A ⊂ Z+ such that 0 ∈ A) and that item (i) and (ii) still
hold.

We also have the following useful lemma.

Lemma 4.3. For any in�nite set A ⊂ Z having �nitely many positive elements and some i ∈ Z
satisfying i > max{j ∈ A}, the following holds for all t ≥ 0

E
(
r
A∪{i}
t − rAt

)
≥ 1.

Proof. It is a direct consequence of the additivity of our process as well as its translation invari-
ance. See the proof of Lemma 2.21 on page 282 of [11].

We have the following

Proposition 4.4. There exists a constant α(γ) ∈ [−∞,∞[ such that the following holds

r−t
t
−→
t→∞

α(γ) almost surely.

Moreover, if γ < γc then α(γ) ≥ 0 and the convergence occurs in L1.

Proof. The existence of α(γ) and the almost sure convergence follow from Theorem 2.1 in [5],
since our process is a growth model. Furthermore, if α(γ) < 0 then almost surely r−t −→

t→∞
−∞ and

by symmetry l+t −→
t→∞

+∞ so that using item (iii) in Lemma 4.1 we have

P
(
η0t 6= ∅

)
−→
t→∞

0. (4.8)
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But by duality we know that

P
(
η0t 6= ∅

)
= P

(
ξt(0) = 1

)
−→
t→∞

ργ , (4.9)

and as ργ > 0 in the sub-critical regime (4.8) and (4.9) implies that α(γ) ≥ 0 when γ < γc.
Then the L1 convergence follows from the second part of Theorem 2.1 in [5].

The following lemma, which uses Lemma 4.3, states that in the sub-critical regime the drift
coe�cient decreases with γ in a superlinear fashion.

Lemma 4.5. For any γ and λ such that 0 ≤ γ + λ < γc we have

α(γ)− α(γ + λ) ≥ λ.

Proof. We adapt an argument from [5]. We build di�erent versions of the dual process on the
same probability space using the graphical construction. Suppose that for each integer k ∈ Z we
have a Poisson process of intensity γ and a Poisson process of intensity λ. We use both of these
processes to put `δ' marks on the time-space diagram. Let (ηt(γ))t≥0 denote the process which use
only the marks coming from the γ Poisson processes, and let (ηt(γ + λ))t≥0 be the process which
use the marks of both family of Poisson processes. We let (r−t (γ))t≥0 and (r−t (γ + λ))t≥0 denote
the corresponding right edge processes. Then we de�ne the following stopping time:

κ = inf{t ≥ 0 : r−t (γ + λ) < r−t (γ)}.

We de�ne a third process, denoted (η̂t)t≥0, which use only marks coming from the Poisson
processes of parameter γ up to time κ, and then the marks coming from both family of Poisson
processes. We require that the initial state of this process is η̂0 = K−∞, 0K. Moreover let (r̂t)t≥0
denotes its right edge. For any t ≥ 0 we have

E
(
r−t (γ)− r−t (γ + λ)

)
≥ E

(
r̂t − r−t (γ + λ)

)
≥ E

(
(r̂t − r−t (γ + λ))1t≥κ

)
.

Furthermore η̂κ is an in�nite set containing �nitely many positive points, η−κ (γ + λ) ⊂ η̂κ and η̂κ
contains at least one element further right than the right edge of η−κ (γ + λ) by the de�nition of
κ and the equality η̂κ = η−κ (γ). Therefore, using Lemma 4.3 and the strong Markov property, we
have

E
(
(r̂t − r−t (γ + λ))1t≥κ

)
= P (t ≥ κ)E

(
r̂t − r−t (γ + λ) | t ≥ κ

)
= P (t ≥ κ)E

(
rη̂κt−κ(γ + λ)− rηκ(γ+λ)t−κ (γ + λ)

∣∣∣ t ≥ κ)
≥ P (t ≥ κ) .

Furthermore, if we denote by κ̂ the �rst time at which the rightmost element in
(
η−t (γ + λ)

)
t≥0

is a�ected by a mark from one of the Poisson processes of rate λ, we have that

P (κ ≤ t) ≥ P (κ̂ ≤ t) .

Therefore it follows that

E
(
r−t (γ)

)
− E

(
r−t (γ + λ)

)
≥ 1− e−λt.

Now for any integer n ≥ 1

E
(
r−t (γ)

)
− E

(
r−t (γ + λ)

)
≥

n∑
k=1

E
[
r−t

(
γ +

k − 1

n
λ

)]
− E

[
r−t

(
γ +

k

n
λ

)]
≥ n

(
1− e− λn t

)
,
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and the last term of these inequalities is equal to λt + o(1) when n diverges by Taylor expansion
so that by taking the limit we are left with

E
(
r−t (γ)

)
t

−
E
(
r−t (γ + λ)

)
t

≥ λ.

We conclude by noticing that the left-hand side converges to α(γ) − α(γ + λ) using the L1

convergence part of Proposition 4.4 and the assumption that 0 ≤ γ + λ < γc.

From there we obtain the following proposition, which was the purpose of this section and is
mandatory to establish the results of the following section. It simply says that in the sub-critical
regime the limit obtained in Proposition 4.4 cannot be equal to 0.

Proposition 4.6. If γ < γc then α(γ) > 0.

Proof. By Lemma 4.5 we have

α(γ) ≥ α
(
γ +

γc − γ
2

)
+
γc − γ

2
,

and as γ + γc−γ
2 < γc it follows from Proposition 4.4 that the �rst term in the right-hand side

is greater or equal to 0 while the second term is strictly greater than 0, which ends the proof.

5 Sub-exponential estimates

In this section we obtain sub-exponential estimates for the edge and the time of extinction of the
dual process. Then we use these results to obtain a similar sub-exponential bound for the time
correlations of the auxiliary process, on the same lines as in [13]. The bounds are expressed in
terms of two constants C1 and C2 which exact value is unimportant and will change from one
result to the other. In fact the value of these constants might sometimes even change from one
line to the other in the course of the same proof, in order to avoid an overload in notation.

Proposition 5.1. If γ < γc then for any a < α there exists positive constants C1 and C2

(depending on a) such that for any t ≥ 0

P
(
r−t < at

)
≤ C1e

−C2t.

Proof. This result is the analogue for our system of Theorem 4 in [6]. The authors prove this
result for another well-known interacting particle system, namely the contact process on Z, using
a clever construction linking the graphical characterization of the contact process (analog to the
construction we gave in Section 2) to one-dependent percolation. Nonetheless, as noticed by the
authors themselves at the very end of the Section 2 of their article, this construction�and therefore
the proof of their Theorem 4�can be carried out without supplementary work for a larger class
of systems which includes at least nearest neighbors additive growth models. This construction is
thus valid for our process as well. We let it to the reader to check that all the arguments given there
works as well for our system, using previously proven results. The crucial point to carry out this
construction is that there exists in the sub-critical regime some α > 0 such that r−t ∼ tα as t goes
to ∞ (as proven in the previous section). The only other results needed to check the validity of
their proof for our system are translation invariance, duality and the existence of spatially ergodic
invariant measures with positive density to which (ηt)t≥0 and (ξt)t≥0 converge monotonically as t
goes to ∞ (see Section 3.3).

In the course of the proof of Theorem 5.3 below we would like at some point to use the converse
of the item (iii) in Lemma 4.1. Unfortunately, it su�ces to consider the event in which the
only dual-valid path starting at 0 in the graphical construction immediately ends on the tips of a
double arrow to see that the converse doesn't hold. A little bit of thought though reveals that this
is actually the only counter-example, so that we can obtain an assertion which is close enough to
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the converse we need. This is the object of the next lemma. We introduce the following notation
(using the jump times of Section 3.2):

T̃ = min
{
T̃ ∗−1,0, T̃

∗
0,0, T̃

∗
1,0, T̃

†
0,0

}
.

In other words T̃ corresponds to the time of the �rst event a�ecting neuron 0 in
(
η0t
)
t≥0.

Moreover we de�ne the following event

E = {T̃ = T̃ ∗0,0}.

Now we can formulate our lemma.

Lemma 5.2. On Ec, if σ0 <∞ then l+σ0
> r−σ0

.

Proof. The complementary of E can be divided into the following disjoint union

Ec =
{
T̃ = T̃ †0,0

}
∪
{
T̃ = T̃ ∗−1,0

}
∪
{
T̃ = T̃ ∗1,0

}
. (5.10)

We take care of the di�erent cases in (5.10) separately. First suppose that {T̃ = T̃ †0,0}. Then

obviously σ0 = T̃ . Moreover in this case l+σ0 ≥ 1 and r−σ0 ≤ −1 so that l+σ0 > r−σ0 .

Now let's consider the remaining cases, that is either T̃ = T̃ ∗−1,0 or T̃ = T̃ ∗1,0. By symmetry it is

su�cient to treat only one them. We suppose T̃ = T̃ ∗−1,0. We've assumed that σ0 is �nite so that
we are allowed to de�ne K to be the random variable corresponding to the index of the last active
neuron before extinction. Moreover the fact that T̃ = T̃ ∗−1,0 implies that max0≤t<σ0

∣∣η0t ∣∣ ≥ 2.
Therefore we can de�ne the time at which the penultimate neuron in (η0t )t≥0 becomes quiescent:

S = sup{s < σ0 :
∣∣η0s ∣∣ = 2}.

Again we shall distinguish between two separate cases: either neuron K becomes quiescent be-
cause it encounters an event of the (T̃ †i,n)i∈Z,n∈N family or because it encounters an event of the

(T̃ ∗i,n)i∈Z,n∈N family.

For the �rst option, we notice that by the �rst item of lemma 4.1 we have r−s = K = l+s for
any s ∈]S, σ0[. Therefore r−σ0 ≤ K − 1 and l+σ0 ≥ K + 1, so that l+σ0 > r−σ0 .

Now for the second option we let L be the index of the penultimate active neuron, which
becomes quiescent at time S. Without loss of generality we assume L < K (by symmetry the
case L > K can be proven using the same arguments). This last case breaks down into two more
sub-cases: either L = K − 1 or L < K − 1.

If L = K − 1, then neuron L has K as an active neighbor at time S, and therefore it becomes
quiescent because of a `δ' mark. Then there is no element of the family (T̃ ∗L,n)n∈N on ]S, σ0[ as
otherwise, either K would not be the last particle alive, either L would not be the penultimate.
Therefore K has no active neighbor in (η−s )s∈]S,σ0[ and thus it becomes quiescent at time σ0 in

(η−s )s≥0 as well. Moreover by Lemma 4.1 r−s = K for any s ∈]S, σ0[ so that r−σ0 ≤ K − 2.
Furthermore l+σ0 ≥ K, so that we indeed have l+σ0 > r−σ0 in this case.

Finally suppose that L < K − 1. De�ne R to be the time of the last event a�ecting (η0(t))t≥0
before time S, that is:

R = sup{r < S : |η0r | 6= 2}.

Then by the second part of lemma 4.1, for any s ∈ [R,S], η0s = η−s ∩ [L,K]. And as any i ∈KL,KJ
is quiescent in (η0s)s∈[R,S] it shall be quiescent in (η−s )s∈[R,S] as well. In particular this is true for
i = K − 1. Then the conclusion follows from the same arguments as in the previous case.

11



Using the two previous results we are able to obtain the following precious exponential bound
on the time of extinction of the dual process.

Theorem 5.3. If γ < γc, then there exists two positive constants C1 and C2 such that for any
t ≥ 0 and any �nite set A ∈P(Z)

P
(
t < σA <∞

)
≤ C1|A|e−C2t.

Proof. We �rst prove the result for A = {0}. Let a be some real number such that 0 < a < α,
and let N ≥ 0 be some integer. Then by Proposition 5.1 the following holds for some constants
C1 and C2

P
(
r−n < an for some n ≥ N

)
≤ C1

∑
n≥N

(e−C2n) =
C1

1− e−C2
e−C2N .

Moreover, if (Nt)t≥0 denotes an homogeneous Poisson Process of rate 1, then an obvious cou-
pling with (r−t )t≥0 gives

P
({
r−t < 0 for some t ∈ [n, n+ 1]

}
∩
{
r−n+1 > a(n+ 1)

})
≤ P (N1 > a(n+ 1)) ,

and by the exponential Markov inequality

P (N1 > a(n+ 1)) ≤ ee−1−ae−an.

Now

P
(
r−t < 0 for some t ≥ N

)
≤ P

(
r−n < an for some n ≥ N

)
+
∑
n≥N

P
({
r−t < 0 for some t ∈ [m,m+ 1]

}
∩
{
r−m+1 > a(m+ 1)

})
.

Therefore, from the inequalities above it is easy to �nd two constants C ′1 and C ′2 such that

P
(
r−t < 0 for some t ≥ N

)
≤ C ′1e−C

′
2N .

And by a slight modi�cation of the constant C ′1 we obtain that for any T ∈ R+

P
(
r−t < 0 for some t ≥ T

)
≤ C ′1e−C

′
2T .

By symmetry we have the same bound for P
(
l+t > 0 for some t ≥ T

)
, therefore

P
(
r−t < l+t for some t ≥ T

)
≤ P

(
r−t < 0 for some t ≥ T

)
+ P

(
l+t > 0 for some t ≥ T

)
≤ 2C ′1e

−C′
2T . (5.11)

Finally

P
(
t < σ0 <∞

)
≤ P

({
t < σ0 <∞

}
∩ Ec

)
+ P

(
{σ0 > t} ∩ E

)
,

and the �rst element in the right hand side is less than 2C ′1e
−C′

2t by Lemma 5.2 and (5.11),

while the second element is less than P
(
T̃0,0 > t

)
= e−t, so that in the end

P
(
t < σ0 <∞

)
≤ 2(C ′1 + 1)e−min(1,C′

2)t.
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Now it only remains to generalize the result to some �nite initial state A not necessarily equal
to {0}. This is easily done using additivity, monotonicity and translation invariance

P
(
t < σA <∞

)
= P

(⋃
i∈A

{
σi > t

}
∩
{
σA <∞

})
≤
∑
i∈A

P
(
σi > t, σA <∞

)
≤
∑
i∈A

P
(
t < σi <∞

)
= |A| · P

(
t < σ0 <∞

)

Now the only missing piece in order to prove that (ξt)t≥0 as exponentially decaying time
correlations is the following lemma, which gives a useful linear decomposition of cylinder functions
in terms of indicator functions.

Lemma 5.4. Let f : P(Z)→ R be a cylinder function. Then there exists a family (Si)i∈J1,nK
of �nite sets in Z and a family (λi)i∈J0,nK of values in R such that for any A ∈P(Z)

f(A) = λ0 +

n∑
i=1

λi1A∩Si 6=∅.

Proof. Let B ⊂ Z be the support of f , and let (Bi)i∈J1,nK be the family of all the subsets of B.
Then, for any A ∈P(Z)

f(A) = f(A ∩B) =

n∑
i=1

f(Bi)1A∩B=Bi . (5.12)

Moreover, for any A ∈P(Z) the following identity holds

1A∩B=Bi = 1A∩B⊂Bi −
∑

Bj⊂Bi
Bj 6=Bi

1A∩B=Bj , (5.13)

and if Bj = ∅ then
1A∩B=Bj = 1A∩B⊂Bj . (5.14)

Therefore, applying (5.13) recursively to itself�that is, to the elements in the sum of the
right hand side�and using (5.14) to conclude the recursion, it follows from (5.12) that f can be
expressed as a �nite linear combination of indicators of the form 1 • ∩B⊂Bi as well. Then for any
i ∈ J1, nK we de�ne Si = Bci ∩ B and the conclusion follows from the fact that for any A ∈P(Z)
the following holds

1A∩B⊂Bi = 1− 1A∩Si 6=∅.

Theorem 5.5. Let f : P(Z) → R be a cylinder function. If γ < γc then there exists positive
constants C1 and C2 (depending on f) such that for any s, t ∈ R+

|Cov (f(ξt), f(ξs)) | ≤ C1e
−C2|t−s|.

Proof. Let (Si)i∈J1,nK and (λi)i∈J1,nK be as in Lemma 5.4 so that for any t ≥ 0

f(ξt) =

n∑
i=1

λi1ξt∩Si 6=∅.
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Therefore, for any s ≥ 0 and t ≥ 0

|Cov (f(ξt), f(ξs))| ≤
n∑
i=1

n∑
j=1

|λiλj | ·
∣∣Cov

(
1ξt∩Si 6=∅,1ξs∩Sj 6=∅

)∣∣ .
Thus it is su�cient to prove that for any �nite sets A,B ∈ P(Z) there exists some positive

constants C1 and C2 such that for any s ≥ 0 and t ≥ 0

|Cov
(
1ξt∩A6=∅,1ξs∩B 6=∅

)
| ≤ C1e

−C2|t−s|.

Without loss of generality we assume t ≤ s. Let F be the event that there exists a valid path
from Z× t to B × s. Moreover let G = {ξt ∩A 6= ∅} and H = {ξs ∩B 6= ∅}. We have∣∣Cov

(
1ξt∩A 6=∅,1ξs∩B 6=∅

)∣∣ = |P (G ∩H)− P (G)P (H)| .

Furthermore it is clear from the graphical construction that H ⊂ F so that we can replace H
by H ∩ F in the equation above. Also events depending on disjoint regions of the graph G are
independent so that P (G ∩ F ) = P (G)P (F ). Therefore

∣∣Cov
(
1ξt∩A 6=∅,1ξs∩B 6=∅

)∣∣ = |P (G ∩H ∩ F )− P(G ∩ F ) + P(G)P(F )− P (G)P (H ∩ F )|
= |[P(G ∩ F )− P (G ∩H ∩ F )]− P(G) [P(F )− P(H ∩ F )]|
= |P (G ∩ F ∩Hc)− P(G)P(F ∩Hc)|
= P (F ∩Hc) · |P(G)− P (G|F ∩Hc)|
≤ P (F ∩Hc) .

And by the backward version of the dual process,

P (F ∩Hc) = P
(
s− t < σB < s

)
≤ P

(
s− t < σB <∞

)
.

Then use Theorem 5.3 to conclude.

6 Proof of the main theorem

Before proving Theorem 2.1 per se we shall prove a similar result concerning the auxiliary process,
which is the object of Section 6.3. Before doing so we introduce the �nite versions of the auxiliary
process in Section 6.1, as well as the semi-in�nite versions, and explain how, together with the
in�nite system, they all relate to each other. We then state important results about the time of
extinction of the �nite version in Section 6.2. In Section 6.4 we then proceed to the main proof.

6.1 Finite and semi-in�nite auxiliary processes

The �nite auxiliary processes are the auxiliary processes of the �nite versions of the system,
with which Theorem 2.1 is concerned, that is, the cases In = J−n, nK and Vn,i = {−i, i}∩ J−n, nK.
These are the processes with state space {0, 1}2n+1 and which dynamic is given by generator (3.1)
when you replace Z by In under the summation, and where the maps (3.3) are de�ned with respect
to Vn,i instead of {i− 1, i+ 1}. We write

(
ξn(t)

)
t≥0 for these �nite versions. Moreover we de�ne
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the extinction time of the �nite process, which is always �nite by standard considerations about
irreducible Markov processes on a �nite state space. For any A ∈P(J−n, nK) let

τAn = inf{t ≥ 0 : ξAn (t) = ∅}.

We also introduce the semi-in�nite auxiliary processes, corresponding to the case in which
the neurons are indexed on I[n,∞[ = Jn,+∞J or I]−∞,n] = K−∞, nK for some n ∈ Z, the set of
presynaptic neurons being given as usual by {i− 1, i+ 1} ∩ I[n,∞[ or {i− 1, i+ 1} ∩ I]−∞,n]. These
processes are denoted

(
ξ[n,∞[(t)

)
t≥0 and

(
ξ]−∞,n](t)

)
t≥0 respectively. These semi-in�nite processes

have the same general properties as their in�nite counterpart; in particular there exists an upper-
invariant measure for each of them, giving mass 0 to the empty-set in the sub-critical regime (see
[1] for details). We write µ[0,∞[ for the upper-invariant measure of

(
ξ[0,∞[(t)

)
t≥0, which is the only

one that will be needed in the proofs below.

A graphical construction similar to the one introduced in Section 3.1 can obviously be given for
the �nite and semi-in�nite processes, using only the Poisson processes of one of the sub-diagrams
J−n, nK × R+, Jn,+∞J×R+ or K−∞, nK × R+. This allows a simple and very useful coupling
between the �nite, semi-in�nite and in�nite processes, which gives us the following lemma.

Lemma 6.1. For any t ≥ 0 the following holds on {τn > t}

(i) ξn(t) = ξ(t) ∩ [min ξn(t),max ξn(t)],

(ii) min ξn(t) = min ξ[−n,∞[(t) and max ξn(t) = min ξ]−∞,n](t).

The proof, which is pretty straightforward using the natural coupling permitted by the graphical
construction, can be found in [1].

6.2 Results about the time of extinction of the �nite process

Now let us state a fundamental result about the time of extinction of (ξn(t))t≥0 which was proven
in [1], and which is the �rst of the two properties characterizing metastable systems we've evoked in
the introduction. Notice that while this result is stated in terms of the extinction time of the �nite
auxiliary process�that is the time at which the last neuron becomes quiescent�it trivially implies
the same result for the time of the last spike, even if these two random times are not formally
equals. This result will be used repeatedly from now on up to the end of this article.

Theorem 6.2. Suppose 0 < γ < γc. Then we have the following convergence

τn
E(τn)

D−→
n→∞

E (1),

where D denotes a convergence in distribution.

Remark 6.3. In [1] this result was proven only for γ < γ′c, where γ
′
c is the critical value for

the semi-in�nite process. Nonetheless, with the construction invoked in the proof of Proposition 5.1
the parameter p of the percolation process can be taken as close to 1 as needed, while the coupling
with (ξt)t≥0 remains valid even if the value of γ is kept �xed. But if p is big enough then with
positive probability there is a path in the percolation structure which never goes further left than 0
on the horizontal abscissa. An immediate consequence is that γc = γ′c, so that we don't need the
caveat anymore.

The second result tells us that in the sub-critical regime the expectation of the time of extinction
grows strictly faster than n itself as n grows. While this result will mostly be needed in the last
section of this paper, for the moment it gives us a rigorous proof of a fact that might seems anyway
evident: it ensures us that E(τn) → ∞ as n grows, which in turns guarantees that there is no
problem in choosing a (Rn)n≥0 satisfying the conditions of Theorem 2.1.
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Proposition 6.4. Suppose 0 < γ < γc. Then n/E(τn)→ 0 as n goes to ∞.

Proof. In the following we write n
2 while we should sometimes write

⌊
n
2

⌋
in order to avoid a useless

overload in the notation. By duality

P
(
ξ

J0,n2 K
t 6= ∅

)
−→
t→∞

µ̃
(
A : A ∩

[
0,
n

2

]
6= ∅
)
.

Therefore, if we write En :=
{
ξ

J0,n2 K
t 6= ∅ for all t ≥ 0

}
then En =

⋂
t≥0

{
ξ

J0,n2 K
t 6= ∅

}
and thus

P (En) = µ̃
(
A : A ∩

[
0,
n

2

]
6= ∅
)
−→
n→∞

1.

Now we de�ne
κn := inf

{
t > 0 : {−n, n} ∩ ξJ0,n2 K

t 6= ∅
}
.

From Lemma 4.1 (and translation invariance) we have r
J0,n2 K
t = r

K−∞,n2 K
t on En, and therefore

by Proposition 4.4 and Proposition 4.6 it follows that r
J0,n2 K
t → ∞ almost surely on En when t

diverges. As a consequence, on En, the stopping time κn is almost surely �nite and τn ≥ κn.
Moreover, if (Wk)k≥1 is a family of independent and identically distributed random variables such
that W1  E (1), then an obvious coupling gives that

κn ≥
n/2∑
k=1

Wk.

Therefore

P
(
τn <

n

4
, En

)
≤ P

 1

n/2

n/2∑
k=1

Wk >
1

2

 .

The right hand side in the inequality above goes to 0 as n diverges by the law of large numbers.
Thus, as En has probability one asymptotically it implies that P (τn < n/4) goes to 0 when n goes
to ∞. Then dividing by E(τn) in both side of the inequality and using Theorem 6.2 we obtain the
result.

6.3 Convergence of the times averages for the auxiliary process

For any t, R ∈ R+ and n ≥ 0 we de�ne the following measure on P(Z)

AnR(t, • ) =
1

R

∫ t+R

t

1ξn(s)∈ • ds.

As usual, for any measurable function f : P(Z) → R we write AnR(t, f) for the integral of f
with respect to AnR(t, • ). It is straightforward from basic measure-theoretic considerations to see
that actually

AnR(t, f) =
1

R

∫ t+R

t

f(ξn(s))ds.

Then the following result holds.

Theorem 6.5. Let (Rn)n≥0 be an increasing sequence of positive real numbers satisfying the
same conditions as in Theorem 2.1. Then, for any cylinder function f : P(Z) 7→ R we have, for
any t ≥ 0

AnRn (t, f)
P−→

n→∞
µ(f).
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The two main ingredients are the following lemmas, which we prove now, before entering the
proof of Theorem 6.5. These are essentially a consequence of the weak convergence of (ξt)t≥0,
together with Chebyshev's inequality and the exponential decay of the time correlations.

Lemma 6.6. Let ε > 0 and f : P(Z)→ R be a cylinder function. Then there exists a constant
C > 0 (which depends only on f and ε) such that for any �xed t ≥ 0 and for big enough R ∈ R+

the following holds

P

(∣∣∣∣∣ 1

R

∫ t+R

t

f(ξs)ds− µ(f)

∣∣∣∣∣ > ε

)
≤ C

R
.

Proof. Fix some t ≥ 0. As µ is de�ned as the weak limit of (ξt)t≥0 there exists some t0 such that
for any t ≥ t0

|E (f(ξt))− µ(f)| < ε

2
.

Then, if t ≥ t0 we have ∣∣∣∣∣ 1

R

∫ t+R

t

E (f(ξs)) ds− µ(f)

∣∣∣∣∣ < ε

2
. (6.15)

If t < t0 then (assuming t+R > t0)∣∣∣∣∣ 1

R

∫ t+R

t

E (f(ξs)) ds− µ(f)

∣∣∣∣∣ ≤ 1

R

∫ t0

t

|E (f(ξs))− µ(f)| ds+
1

R

∫ t+R

t0

|E (f(ξs))− µ(f)| ds,

and as the �rst element in the sum of the right hand side goes to 0 as R grows while the second
element is strictly less than ε/4, the following must holds for big enough R

P

(∣∣∣∣∣ 1

R

∫ t+R

t

f(ξs)ds− µ(f)

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣ 1

R

∫ t+R

t

f(ξs)ds−
1

R

∫ t+R

t

E (f(ξs)) ds

∣∣∣∣∣ > ε

2

)
.

(6.16)

Writing Xt,R := 1
R

∫ t+R
t

f(ξs)ds and using Fubini's theorem, (6.16) becomes

P

(∣∣∣∣∣ 1

R

∫ t+R

t

f(ξs)ds− µ(f)

∣∣∣∣∣ > ε

)
≤ P

(
|Xt,r − E (Xt,R)| > ε

2

)
. (6.17)

Again, Fubini's theorem gives

E
(
X2
t,R

)
=

1

R2

∫ t+R

t

∫ t+R

t

E (f(ξu)f(ξv)) dudv,

and

E (Xt,R)
2

=
1

R2

∫ t+R

t

∫ t+R

t

E (f(ξu))E (f(ξv)) dudv,

and therefore from Theorem 5.5 we obtain the following

Var(Xt,R) =
1

R2

∫ t+R

t

∫ t+R

t

Cov (f(ξu), f(ξv)) dudv

≤ 1

R2

∫ t+R

t

∫ t+R

t

C1e
−C2|u−v|dudv.

Then by a simple change of variable, for any u ∈ [t, t+R]∫ t+R

t

C1e
−C2|u−v|dv = C1

[∫ u−t

0

e−C2vdv +

∫ t+R−u

0

e−C2vdv

]

≤ 2C1

∫ ∞
0

e−C2udu.
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Thus

Var (Xt,R) ≤ 2C1

C2R
.

Then Chebyshev's inequality and (6.16) imply that

P

(∣∣∣∣∣ 1

R

∫ t+R

t

f(ξs)ds− µ(f)

∣∣∣∣∣ > ε

)
≤ 8C1

C2ε2R
.

Lemma 6.7. Let ε > 0 and f : P(Z)→ R be a cylinder function. Then there exists a positive
constant C (which depends only on f and ε) such that if l is big enough, then for any �xed t ≥ 0
and for any R ∈ R+ the following holds

P

[
1

R

∫ t+R

t

1ξ[0,∞[(s)∩[0,l]=∅ ds > ε

]
≤ C

R
.

Proof. This lemma is easily obtained by similar arguments as in the proof of Lemma 6.6. For any
l ≥ 0, the function hl : ξ 7→ 1ξ∩[0,l]=∅ is a decreasing function, so that by stochastic monotonicity:

1

R

∫ t+R

t

E
(
hl(ξ[0,∞[(s))

)
ds ≤ µ[0,∞[ (hl) .

Moreover the fact that µ[0,∞[ gives mass 0 to the empty set in the sub-critical regime implies
that

µ[0,∞[(hl) = µ[0,∞[ ({A : A ∩ [0, l] = ∅}) −→
l→∞

0.

Therefore, for big enough l we have

P

[
1

R

∫ t+R

t

hl(ξ[0,∞[(s)) ds > ε

]
≤ P

[
1

R

∫ t+R

t

hl(ξ[0,∞[(s))− E
(
hl(ξ[0,∞[(s))

)
ds > ε

]
.

Then the conclusion comes from the same arguments4 as in the proof of Lemma 6.6 (from Eq.
(6.16) to the end), using the fact that hl is a cylinder function.

Proof of Theorem 6.5. Fix some t ≥ 0. First notice that using Theorem 6.2 and the hypothesis
on (Rn)n≥0 (as well as the fact that E(τn)→∞) the following holds

P
(
t+Rn < τn

)
−→
n→∞

1.

Hence, writing Ωn = {t+Rn < τn}, it will be enough to prove that, for any ε > 0

P
(∣∣AnRn(t, f)− µ(f)

∣∣ > ε, Ωn
)
−→
n→∞

0.

We have

4Notice that to apply the same arguments as in the proof of Lemma 6.6 we need to have the exponential decay

of the time correlations for the semi-in�nite processes, while formally Theorem 5.5 is proven only for the in�nite

process. Nonetheless one can prove an analogous result for the semi-in�nite processes by the same arguments as

those of Theorem 5.5.
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P
( ∣∣AnRn(t, f)− µ(f)

∣∣ > ε, Ωn

)
≤ P

(∣∣∣∣∣AnRn(t, f)− 1

Rn

∫ t+Rn

t

f(ξs)ds

∣∣∣∣∣ > ε

2
, Ωn

)

+ P

(∣∣∣∣∣ 1

Rn

∫ t+Rn

t

f(ξs)ds− µ(f)

∣∣∣∣∣ > ε

2

)

Moreover, for any l ∈ N and for n big enough, using the fact that the support of f has to lie in
[−n+ l, n− l] when n is big, Lemma 6.1 yields

{min ξn(t) < −n+ l,max ξn(t) > n− l} ⊂ {f(ξn(t)) = f(ξt)}. (6.18)

For any l ∈ N we let hnl : P(Z)→ R and gnl : P(Z)→ R be de�ned for any ξ ∈P(Z) by

hnl (ξ) = 1ξ∩[−n,−n+l]=∅,

and
gnl (ξ) = 1ξ∩[n−l,n]=∅.

Now, using (6.18) and the fact that |f(ξn(t))− f(ξ(t))| < 2‖f‖∞ we have

∣∣∣∣∣ANRn(t, f)− 1

Rn

∫ t+Rn

t

f(ξs)ds

∣∣∣∣∣ ≤ 2‖f‖∞
1

Rn

∫ t+Rn

t

hnl (ξn(s)) + gnl (ξn(s))ds (6.19)

Furthermore, for any l < n, and for any 0 ≤ s < τn Lemma 6.1 yields:

hnl (ξn(s)) = hnl
(
ξ[−n,+∞[(s)

)
and gnl (ξn(s)) = gnl

(
ξ]−∞,n](s)

)
. (6.20)

Therefore on Ωn the right hand side in (6.19) is less than

2‖f‖∞
∫ t+Rn

t

hnl (ξ[−n,+∞[(s)) + gnl (ξ]−∞,n](s))ds.

Then, for any l ∈ N and for n big enough the following holds (using translation invariance and
symmetry)

P
( ∣∣AnRn(t, f)− µ(f)

∣∣ > ε, Ωn

)
≤ 2P

[
1

R

∫ t+R

t

1ξ[0,∞[(s)∩[0,l]=∅ ds >
ε

8‖f‖∞

]

+ P

[∣∣∣∣∣ 1

R

∫ t+R

t

f(ξs)ds− µ(f)

∣∣∣∣∣ > ε

2

]
.

Then the result follows from Lemma 6.6 and Lemma 6.7.
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6.4 Proof of the main theorem

We can now turn to the proof of the main Theorem. An important element of this proof is the
following lemma, which is the last result we prove before engaging into the proof of this theorem. It
is a coarser version of Theorem 5.5, but for the �nite version of our system, the exponential decay
being tempered by two other terms which converge to zero when n grows. While we conjecture that
the exponential decay actually holds without these two terms, we only prove this weaker version
as it is su�cient for our needs.

Lemma 6.8. Let s, r ∈ R+ and let i ∈ Z. Then there exists two positive constants C1 and C2

such that for any n ≥ 0∣∣Cov
(
1ξn(s)∩{i}6=∅,1ξn(t)∩{i}6=∅

)∣∣ ≤ C1e
−C2|t−s| + P (τn < max(s, t)) + εn,

where εn is some positive quantity satisfying εn −→
n→∞

0.

Proof. Without loss of generality we assume t ≤ s. Moreover we let Gn = {ξn(t) ∩ {i} 6= ∅} and
Hn = {ξn(s) ∩ {i} 6= ∅}. We also de�ne the event F that there is a valid path on the graphical
construction (of the in�nite process) from Z× t to {i}× s. Then by the same arguments as in the
proof of Theorem 5.5 we obtain∣∣Cov

(
1ξn(s)∩{i}6=∅,1ξn(t)∩{i}6=∅

)∣∣ ≤ P (F ∩Hc
n) .

Then

P (F ∩Hc
n) ≤ P (s− t < σi < s) + P (τn ≤ s) + P ({σi ≥ s} ∩Hc

n ∩ {τn > s}) .

As in the proof of 5.5 P (s− t < σi < s) ≤ P (s− t < σi <∞) ≤ C1e
−C2|t−s|, so it only remains

to show that the second term in the sum above goes to 0 as n diverges.

If σi ≥ s then {j}×0 −→ {i}×s for some j ∈ Z. But, if j ∈ {−n, . . . , n}, then on Hc
n this path

has to cross at least one of the two frontiers {n} × R and {−n} × R at some point, as otherwise
there would be a valid path from {−n, . . . n} to (i, s) that never escapes {−n, . . . n} × R+, which
is not allowed on Hc

n. If j /∈ {−n, . . . n} of course the path crosses one of the two frontiers as well.
Consequently, in both cases we can de�ne s′ ≤ s to be the last time of crossing, and we have either
(n, s′) −→ (i, s) or (−n, s′) −→ (i, s). But in the �rst case ξn(s)∩{i, . . . n} = ∅, as otherwise there
would be a valid path crossing the path from (s′, n) to (s, i) and the concatenation would then
be a valid path from {−n, . . . n} × 0 to (i, s) never escaping {−n, . . . n} × R+ (which again is not
allowed on Hc

n). Similarly we have ξn(s) ∩ {−n, . . . i} = ∅ in the other case.

From the discussion above it follows that

P ({σi ≥ s} ∩Hc
n ∩ {τn > s}) ≤ P (ξn(s) ∩ {i, . . . n} = ∅, τn > s)

+ P (ξn(s) ∩ {−n, . . . i} = ∅, τn > s) .

Then, using Lemma 6.1 this becomes

P ({σi ≥ s} ∩Hc
n ∩ {τn > s}) ≤ P

(
ξ[0,+∞](s) ∩ [0, n− i] = ∅

)
+ P

(
ξ[0,+∞](s) ∩ [0, n+ i] = ∅

)
≤ 2P

(
ξ[0,+∞](s) ∩ [0,min(n− i, n+ i)] = ∅

)
,

and by stochastic monotonicity this is less than

εn := 2µ[0,+∞[ (A : A ∩ [0,min(n− i, n+ i)] = ∅) .

Finally εn −→
n→∞

0 as µ[0,+∞[ gives mass 0 to ∅.

With this preliminary completed, we can turn to the proof of the main theorem.
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Proof of Theorem 2.1. We �x t and F and we let ε > 0. We aim to show that

P
(∣∣∣N̂n

Rn (t, F )− |F | · ρ
∣∣∣ > ε

)
−→
n→∞

0.

For any ξ ∈ {0, 1}Z we write SF (ξ) =
∑
i∈F ξi. Then

P
(∣∣∣N̂n

Rn (t, F )− |F | · ρ
∣∣∣ > ε

)
≤ P

(∣∣∣N̂n
Rn (t, F )−AnRn (t, SF )

∣∣∣ > ε

2

)
+ P

(∣∣∣AnRn (t, SF )− |F | · ρ
∣∣∣ > ε

2

)
We already know that the second element in the sum above goes to 0 by Theorem 6.5, so that

it only remains to show that the �rst element goes to 0 as well. To do so we de�ne, for any i ∈ F
and n ≥ 0, the following random set on R+

In,i := {s : t ≤ s ≤ t+Rn and ξn,i(s) = 1}.

Then the following holds∣∣∣N̂n
Rn (t, F )−AnRn (t, SF )

∣∣∣ ≤ 1

Rn

∑
i∈F

∣∣∣∣∣Ni([t, t+Rn])−
∫ t+Rn

t

ξn,i(s)ds

∣∣∣∣∣
=

1

Rn

∑
i∈F
|Ni(In,i)− λ(In,i)| ,

where λ(In,i) denotes the Lebesgue's measure of the set In,i (there is no problem of measurability
as In,i is almost surely a �nite union of intervals). Above we've used the fact that there can not
be any spike on the set [t, t+Rn] ∩ In,ic. Furthermore, for any �xed In,i, Ni(In,i) corresponds to
the numbers of atoms of a Poisson process of intensity 1 on a Borel set of length λ(In,i), so that
we immediately obtain

E [Ni(In,i)|λ(In,i)] = λ(In,i) (6.21)

It follows that

P

[
1

Rn

∑
i∈F
|Ni(In,i)− λ(In,i)| > ε

]
≤
∑
i∈F

P
[∣∣Ni(In,i)− E

[
Ni(In,i)

]∣∣ > εRn
2|F |

]
+
∑
i∈F

P
[∣∣E [Ni(In,i)]− E [Ni(In,i)|λ(In,i)]

∣∣ > εRn
2|F |

]
.

Now, by Chebyshev's inequality the left-hand side above is less than

4|F |3

ε2R2
n

(
Var

(
Ni(In,i)

)
+ Var

(
E [Ni(In,i)|λ(In,i)]

))
,

and by the law of total variance

Var
(
Ni(In,i)

)
= E

[
Var

(
Ni(In,i)|λ(In,i)

)]
+ Var

(
E [Ni(In,i)|λ(In,i)]

)
.

But for the same reason as for (6.21) we have Var (Ni(In,i)|λ(In,i)) = λ(In,i), so that

E
[
Var

(
Ni(In,i)|λ(In,i)

)]
≤ Rn.
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Therefore, it only remains to bound

8|F |3

ε2R2
n

Var(λi,n).

But then, by the same computations as in the proof of Lemma 6.6 one gets

Var (λi,n) = Var

(∫ t+Rn

t

ξn,i(s)ds

)

=

∫ t+Rn

t

∫ t+Rn

t

Cov (ξn,i(x), ξn,i(y)) dxdy,

and then, using Lemma 6.8

8|F |3

ε2R2
n

Var(λi,n) ≤ 16C1|F |3

C2ε2Rn
+

8|F |3

ε2
(
P(τn < t+Rn) + εn

)
,

and this last bound goes to 0 as n diverges.
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