Metastable versus Deterministic:
Time of extinction of an Infinite System of Spiking
Neurons

Neuromat young researchers workshop
Morgan André
USP-IME

November 26, 2019



Description of the model

The model we are interested in is composed of:

> A countable set | representing the neurons.

» For each neuron i € I, a set V; C | of presynaptic neurons.

> For each i € /, two point processes (N (t)),, and
(NI-T(t“))t>0 representing spiking times and total leak times
respectively.

> For each i € /, a real-valued process (X;(t)),s, representing
the membrane potential of neuron |.



Spiking times, leaking times and membrane potential

The point process (N,T(t)) +>p IS a Poisson process of some rate
v >0. -

The point process (N7 (t))
forany s <t

B(M ()~ M(6)172) = [ E(0X(0) 7)o
Z/ dN; (s

jEV t) t[

and L;(t) = sup {s <t:N:({s}) + Ni({s}) = 1}_

.0 s characterized by the property that

Where

(¢i)icr is a collection of rate functions.



One dimensional lattice with
hard threshold
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Active and quiescent

The choice of 1,~¢ as the rate function has the important
consequence that any given neuron can essentially be in only two
states at any given time.

» When X;(t) = 0 (or equivalently when N(t) has rate 0), we
say that neuron / is quiescent.

» When X;(t) > 1 (or equivalently when N(t) has rate 1), we
say that neuron / is active.



Phase transition

Theorem (P. Ferrari et al.)

Suppose that for any i € 7 we have X;(0) > 1. There exists a

critical value 7. for the parameter ~, with 0 < ~. < 0o, such that
forany i € Z

P(N;(10,00]) <o) =1 ify>1e,

and

]P’(N;*([O,oo[) - oo) >0 ify < e



Sub-critical regime: A result
of metastability



Result of Metastability

For some N € Z* we set Iy = Z N [N, N], and we write
(X/V(t)) ;5 for the membrane potential of neuron i in the version
of the model defined on the finite set /.

We define the extinction time of this model

oN = inf{t >0:XN(t)=0forallic ZN[-N, N]}

Theorem (Metastability)

If v < 7¢, then we have the following convergence

ON <
E(on) mooe O L)




The spiking rate process

We consider an important auxiliary process, namely the spiking
rates process. Denoted (§(t))t>0 and defined as follows

Vt>0, VieZ, &(t)= Ix.(t)>0-

This process is an interacting particle system. It is a continuous
time Markov process taking value in {0,1}%. Each possible state is
a doubly infinite sequence of 0 and 1, indicating in which state
(quiescent or active) each neuron is.



The infinitesimal generator

The generator of the process (£(t)),., is given by

260 =5 (F(el ) = £)) + > mi (Fmiln) = £(m)).

ez i€z
where the maps are given by
0 ifj=1i
() = .
n; otherwise,
and
0 if j =1,
mi(n); = < max(n;,m;) ifje{i—1,i+1},
nj otherwise.
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Super-critical regime: An
asymptotically deterministic
time of extinction



The result

Theorem
Suppose that v > ~.. Then the following convergence holds

TN P
— 1.
E(TN) N—o0




The result

Theorem
Suppose that v > 1. Then the following convergence holds

TN P
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How we prove it

Proposition
Suppose that v > 1. Then there exists a constant 0 < C < c©
depending on ~y such that the following convergence holds

N P
— — C
log(2N + 1) N—co

Proposition
Suppose that v > 1. Then the following convergence holds

E (n)
log(2N + 1) N

)

where C is the same constant as in the previous proposition.



Simulations

d-dimensional lattices and various activation
functions.



Interaction structure

For the graph of the network we consider the lattices Z!, Z? and
Z3. For any d € {1,2,3}, let || - || be the norm on Z¢ given for any
j€Z9 by

d
HIEDE
k=1

where ji is the k-th coordinate of j. The structure of the network is
then given by | =Z9 and V; = {j € 19 |li —j| =1} for i € .



Activation functions

The hard threshold ¢(x) = Li>o.

The linear function ¢(x) = x.

The sigmoid function



Simulations for the hard threshold
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Figure: Sub-critical simulation for dimension 1, 2 and 3.



Simulations for the linear function
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Figure: Simulations for a linear activation function in the lattices of
dimension 1, 2 and 3.



Simulations for the sigmoid function
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Figure: Simulations for a sigmoid activation function in the lattices of
dimension 1, 2 and 3.



Simulations for a varying number of neurons in super-critical
regime
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Figure: Simulations for a hard-threshold function in the lattice of
dimension 1.



THE END

Thanks!



