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It starts with Fuster in 1973

A delayed-response trial typically consists of the presenta-
tion of one of two possible visual cues, an ensuing period
of enforced delay and, at the end of it, a choice of motor
response in accord with the cue. The temporal separation
between cue and response is the principal element making
the delayed response procedure a test of an operationally
defined short-term memory function.



Fuster’s paradigm

Figures 1 and 4 of Fuster (1973).



Other delayed activities are observed

Figure 6 of Fuster (1973).



Figure 3 and Table 1 of Fuster (1973).



A “modern” version of Fuster’s paradigm

Adaptation of figures from Funahashi et al (1989) by Constantinidis
et al (2018).



A better view of the rasters

Funahashi et al (1989) Figure 3.



An example of “inhibition” during the delay

Funahashi et al (1989) Figure 5.



Funahashi et al excitation / inhibition summary

Funahashi et al (1989) Figure 10.



Changing the delay

Funahashi et al (1989) Figure 11.



What happens when mistakes are made?

Funahashi et al (1989) Figure 13.



Parametric working memory

Romo et al (1999) title and figure 1a.



Part of Romo et al (1999) figure 2.



First modelling efforts



Cellular substrate



Figure 1 of Wang et al (2006).



Models with short term facilitation



Membrane conductances (ion channels) generate
fluctuations

Figures 1 and 2 of Sigworth and Neher (1980).



Synapses generate even more fluctuations

Figure 1 of Pouzat and Marty (1998).
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Metastability: general view

Metastability is a notion which initially came from statistical
physics, and which has now been studied in a wide range of fields
to explain various phenomenons. Examples: Supercooling water,
avalanche, nuclear physics etc.

Informally a system is metastable if, under the right conditions,it
tends to persist in a seemingly stable (but in fact precarious)
equilibrium for a long time, before falling into the actual equilibrium
because of an unusually big (but statistically unavoidable) deviation
from this pseudo-equilibrium.
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Metastability: a little bit more specific

In the specific field of interacting particle systems, metastability is
characterized by the following two properties (Cassandro et al.
1984):

I the time it takes for the system to get to the actual
equilibrium (quiescent state) is asymptotically memory-less,

I and before reaching this equilibrium the system behave as if it
were in a stationary regime.
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Definition

I The system consists in a finite set of N identical neurons.

I Each neuron is synaptically connected to all the others.

I Each neuron i ∈ {1, . . .N} is associated with a membrane
potential denoted (Ui (t))t≥0, taking value in N.

I There is a threshold θ ∈ N. If Ui (t) < θ neuron i cannot
spike, while if Ui (t) ≥ θ it spikes at rate β.

I When a neuron spikes its membrane potential is reset to zero.
That’s the only way the membrane potential can decrease.
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I Each neuron i has a facilitation state evolving with t, we
denote it (Fi (t))t≥0 and it takes value in {0, 1}.

I If Fi (t) = 1 and a spike occurs at time t for neuron i , then the
membrane potential of every neuron is incremented by 1.

I If Fi (t) = 0 the spike has no post-synaptic effect.

I The facilitation state of a given neuron is set to 1 immediately
after a spike has been emitted by this neuron, then the
facilitation is lost at rate λ.

I We are here modelling the sub-network of strongly
interconnected pyramidal cells with facilitating synapses
described by Wang et al (2006) in the prefrontal cortex.
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In picture

Simulation with N = 50, β = 10, λ = 10 and θ = 5.
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Simulations outline

Simulations are easily performed since the “global” network rate is
constant between two successive events (spike or facilitation loss).
Our C code writes to disk:

# Simulation of a networks with 50 neurons
# Xoroshiro128+ PRNG seeds set at 20061001 and 19731004
# The initial max membrane potential was set to 50
# The initial probability for a synapse to be active was set to 0.750000
# Parameter theta = 5.000000
# Parameter beta = 10.000000
# Parameter lambda = 10.000000
# Simulation duration = 50.000000

# Spike time Total nb of spikes Neuron of origin
0.0012163964 1 11
0.0015877227 2 39
0.0021882591 3 4
0.0046765785 4 18
0.0065390698 5 33
...



Tiny network example

Trajectory of an entire system composed of 30 neurons, with λ = 5,
β = 10 and θ = 5. The initial probability for the synapses to be
active was 0.75, the initial membrane potentials were drawn
uniformly on {0, 1, . . . , 29}.



Increasing λ

Observed counting processes of a network made of 50 neurons with
increasing values of λ from 1 to 9. In black, “top to bottom”,
λ ∈ {1, 2, . . . , 6}; in red, λ > 6.



Survival time distribution

Empirical survival functions for 1000 replicates with θ = 5, λ = 6
(blue and red), λ = 7 (black) and λ = 5 (orange), β = 10 and a
network with 50 neurons. The initial probability for the synapses to
be active was 0.75, the initial membrane potentials were drawn
uniformly on {0, 1, . . . , 49}. All simulations except the blue and red
start from the same random initial state. A log scale is used for
the ordinate.



Survival time when λ is “too” large

Empirical survival functions for 1000 replicates with λ = 15 (blue),
λ = 30 (green), λ = 60 (orange), β = 10 and a network with 50
neurons. The initial probability for the synapses to be active was
0.75, the initial membrane potentials were drawn uniformly on
{0, 1, . . . , 49}. All simulations start from the same random initial
state.
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What can we do, what do we want?

I We cannot yet prove that the metastable state exists.
I We will therefore postulate that it does: that’s what the

simulations show.
I We will use the intrinsic symmetry of the model: the neurons

are all equivalent.
I We will try to get network properties in the metastable state:

I network firing rate
I number of neurons in each state
I number of facilitated synapses
I . . .

from the 4 network parameters: N, θ, β, λ.



Notations and remarks
I We have (Ui (t))t≥0 ∈ N, but from the network dynamics what

matters is to know whether Ui (t) ≥ θ or not.

I We then have to consider θ + 1 different states for Ui (t):
{0, 1, . . . , θ − 1,≥ θ}, that is, θ states below threshold and 1
state above.

I Let us write
I Ni (t) for i ∈ {0, 1, . . . , θ − 1} the number of neurons whose

membrane potential equals i
I Nθ(t) the number of neurons whose membrane potential is ≥ θ

at time t.
I We obviously have:

∑θ
i=0 Ni (t) = N at all times.

I Then under our assumption of quasi-stationarity, the
expectations of the Ni should be almost constant in the
metastable phase.

I Thus we let µ0, µ1, . . . µθ be the constants such that
E(N0(t)) ≈ µ0, . . . , E(Nθ(t)) ≈ µθ, where t is any time
before the extinction of the system.
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Another key quantity
I If we manage to compute µθ, we know the approximate

network rate at anytime (before extinction): νN = µθβ.

I In our model, when neuron j spikes at time s we have
Fj(s+) = 1, the question is:

I if the next spike of j happens at time s + τ , do we still have
Fj(s + τ) = 1?

I By our model definition and our quasi-stationarity assumption
we have: E [Fj(s + τ)|τ ] = e−λτ .

I We introduce now our second “key” quantity:

µE = E
(
e−λτ

)
,

where the expectation is taken with respect to the unknown
distribution of the conditioning rv T whose realization is τ .

I µE is the “mean probability” that the synapse is still facilitated
when the neuron spikes.
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Circulation among U states
I Remark that µE allows us to define the rate of “effective”

spikes (spikes that have a post-synaptic effect): µθβµE .

I Stationarity means that the rate at which neurons leave
membrane potential state i ∈ {0, 1, . . . , θ− 1,≥ θ} must equal
the rate at which neurons enter that state.

I For i ∈ {1, . . . , θ − 1} this translates into:

(µθβµE )µi = (µθβµE )µi−1 ,

that is:
µ0 = µ1 = · · · = µθ−1 .

I For the two extrem states, we have:

(µθβµE )µ0 = µθβ ,

leading to
µ0 = 1/µE .



Circulation among U states
I Remark that µE allows us to define the rate of “effective”

spikes (spikes that have a post-synaptic effect): µθβµE .
I Stationarity means that the rate at which neurons leave

membrane potential state i ∈ {0, 1, . . . , θ− 1,≥ θ} must equal
the rate at which neurons enter that state.

I For i ∈ {1, . . . , θ − 1} this translates into:

(µθβµE )µi = (µθβµE )µi−1 ,

that is:
µ0 = µ1 = · · · = µθ−1 .

I For the two extrem states, we have:

(µθβµE )µ0 = µθβ ,

leading to
µ0 = 1/µE .



Circulation among U states
I Remark that µE allows us to define the rate of “effective”

spikes (spikes that have a post-synaptic effect): µθβµE .
I Stationarity means that the rate at which neurons leave

membrane potential state i ∈ {0, 1, . . . , θ− 1,≥ θ} must equal
the rate at which neurons enter that state.

I For i ∈ {1, . . . , θ − 1} this translates into:

(µθβµE )µi = (µθβµE )µi−1 ,

that is:
µ0 = µ1 = · · · = µθ−1 .

I For the two extrem states, we have:

(µθβµE )µ0 = µθβ ,

leading to
µ0 = 1/µE .



Circulation among U states
I Remark that µE allows us to define the rate of “effective”

spikes (spikes that have a post-synaptic effect): µθβµE .
I Stationarity means that the rate at which neurons leave

membrane potential state i ∈ {0, 1, . . . , θ− 1,≥ θ} must equal
the rate at which neurons enter that state.

I For i ∈ {1, . . . , θ − 1} this translates into:

(µθβµE )µi = (µθβµE )µi−1 ,

that is:
µ0 = µ1 = · · · = µθ−1 .

I For the two extrem states, we have:

(µθβµE )µ0 = µθβ ,

leading to
µ0 = 1/µE .



I But we have:
θ−1∑
i=0

µi + µθ = N .

I Using the equality of the µi for i < θ and our last equality
(µ0 = 1/µE ), yields:

µθ = N − θ

µE
.

I We see that is µE increases, so does µθ and therefore
νN = µθβ, the network spike rate.

I We can also obtain a new expression for the rate of “effective”
spikes:

µθβµE =

(
N − θ

µE

)
βµE = β(µEN − θ) .
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spikes:

µθβµE =

(
N − θ

µE

)
βµE = β(µEN − θ) .



Getting an implicit equation for µE

I In the metastable state, a neuron leaves a membrane potential
state below threshold at rate: β(µEN − θ).

I That neuron must go through a succession of θ states to reach
threshold, the distribution of the time to reach threshold is
therefore an Erlang distribution with parameters θ and
β(µEN − θ) and its mean value is:

θ

β(µEN − θ)
.

I Once threshold has been reach, the rate at which a spike is
generated is β so the interval between two successive spikes of
a given neuron is approximately

T ≈ θ

β(µEN − θ)
+ Y ,

where Y is an exponential random variable with rate
parameter β.
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I Remember that µE = E [exp(−λT )].

I We therefore have:

µE ≈
∫ ∞

0
exp

[
−λ
(

θ

β(µEN − θ)
+ y

)]
β exp(−βy)dy ,

that is

µE ≈
[
exp

(
− λθ

β(µEN − θ)

)] ∫ ∞
0

β exp (−(λ+ β)y) dy .

I Leading to:

µE ≈
β

λ+ β
exp

(
− λθ

β(µEN − θ)

)
.

I This is an implicit equation we must solve for µE .
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Remarks

I We can do better than that and work with the distribution of
the Erlang random variable–giving the time spent below
threshold—instead of the mean of the latter as we just did.

I This requires a numerical integration whose precision we can
check.

I Looking at:

µE ≈
β

λ+ β
exp

(
− λθ

β(µEN − θ)

)
,

we see that the right hand side is a decreasing function of λ, so
if λ is too large the equation could have no solution implying
that there is no metastable state as we saw in the simulations.
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Graphical solution of the implicit equation

Example with N = 50, θ = 6, β = 10, λ = 6.



Comparison between mean-field solution and simulations
The implicit equation solution gives:

With N=500, beta=10.0, lambda=6.0, theta=51 we get:
[...]
mu_E = 0.54435,
nu_N = 4063.10,
mu_theta = 406.31,
mu_A = 308.56.

One numerical simulation gives:

Dealing with sim_n500_u50_f0p75_b10_l6_sim1_neuron:
[...]
*** Network level statistics ****
Ignoring 10 time unit(s) at both ends we get:

nu_N = 4056.3, with a 95% CI of [4045.4,4067.3].
The mean nb of neurons above threshold is: 405.861
The mean nb of active synapse is: 308.909



Where are we?

Introduction: delayed responses, working memory, persistent
activity and all that

Metastability

Definition of the model

Empirical results

Mean-field analysis

Conclusion and perspective



A conclusion for the mathematicians in the room

Remains the question of whether or not it is possible to establish
rigorous results for this model, and if so how to do it?



Asymptotic memorylessness

If you write τN for the time of extinction of a system containing N
neurons, the standard way to obtain the asymptotic memorylessness
is to show:

lim
N→∞

∣∣∣∣P( τNβN > s + t

)
− P

(
τN
βN

> s

)
P
(
τN
βN

> t

)∣∣∣∣ = 0,

where βN is some time scale satisfying E (τN) ∼
N→∞

βN .

See for example:
Cassandro et al. (1984)
Andre (2019)
Andre and Planche (2021)



Asymptotic memorylessness
In the setting of André and Planche (2021), which is close to our
model, a simple technique is to consider only the number of active
neurons at any time t.

This is a (continuous time) Markov chain
→ compute the invariant measure explicitly
→ use it to conclude.
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Asymptotic memorylessness

This technique is NOT applicable here.

Indeed if for any t ≥ 0 we write X (t) for the number of neurons
above the threshold in our model, then (X (t))t≥0 is not a Markov
chain.

An alternative approach would to define (X (t))t≥0 as the process
that gives the count of neurons for each possible value of the
membrane potential.
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Asymptotic memorylessness
That is, for any t ≥ 0

X (t) =
(
X0(t),X1(t), . . . ,Xθ−1(t),X

F
θ (t),X

NF
θ (t)

)
.

with

Xi (t) =
N∑
j=1

1{Uj=i} for i ∈ {0, . . . θ − 1},

and

X F
θ (t) =

N∑
j=1

1{Uj=θ,Fj=1},

XNF
θ (t) =

N∑
j=1

1{Uj=θ,Fj=0}.

Then (X (t))t≥0 is a Markov chain on {0, . . .N}θ+2, but it is also
far less tractable than the previous case...
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Pseudo stationarity

Remains the question of how to give a precise mathematical
formulation of the second point in the characterization of
metastability.

A standard way of expressing this pseudo-stationarity is as follows
(see Cassandro et al. 1984). Let (ξN(t))t≥0 be the state of a
stochastic system taking values in some state space XN .

Then prove that there is a non trivial measure µ on XZ, invariant
for the infinite counterpart of the system, and which correspond to
the weak limit of (ξN(t))t≥0 when N goes to ∞.

Finally prove that, for any suitable f : XZ 7→ R, we have

1
R

∫ s+R

s
f (ξN(t))dt ≈

∫
fdµ.
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Pseudo stationarity

Problem: a sequence of complete graphs doesn’t preserve the local
structure!
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The end
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