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Description of the model

The model we are interested in is composed of:

I A countable set I representing the neurons.
I For each neuron i ∈ I , a set Vi ⊂ I of presynaptic neurons.
I For each i ∈ I , two point processes

(
N∗i (t)

)
t≥0 and(

N†i (t)
)
t≥0 representing spiking times and total leak times

respectively.
I For each i ∈ I , a real-valued process

(
Xi (t)

)
t≥0 representing

the membrane potential of neuron i .



Spiking times, leaking times and membrane potential

The point process
(
N†i (t)

)
t≥0 is a Poisson process of some rate

γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0 is characterized by the property that

for any s ≤ t

E
(
N∗i (t)− N∗i (s)|Fs

)
=

∫ t

s
E
(
φi (Xi (u))|Fs

)
du,

Where
Xi (t) =

∑
j∈Vi

∫
]Li (t),t[

dN∗j (s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.

(φi )i∈I is a collection of rate functions.



Sub-Critical Metastability

One dimensional lattice with nearest neighbour
interaction and hard threshold

(the material presented in this part has been submitted to the
journal of statistical physics)



Spiking times, leaking times and membrane potential

The point process
(
N†i (t)

)
t≥0 is a Poisson process of some rate

γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0 is characterized by the property that

for any s ≤ t

E
(
N∗i (t)− N∗i (s)|Fs

)
=

∫ t

s
E
(
1Xi (u)>0 |Fs)

)
du,

Where
Xi (t) =

∑
j∈Vi

∫
]Li (t),t[

dN∗j (s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.
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Spiking times, leaking times and membrane potential

The point process
(
N†i (t)

)
t≥0 is a Poisson process of some rate

γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0 is characterized by the property that

for any s ≤ t

E
(
N∗i (t)− N∗i (s)|Fs

)
=

∫ t

s
E
(
1Xi (u)>0|Fs)

)
du,

Where

Xi (t) =

∫
]Li (t),t[

dN∗i−1(s) +

∫
]Li (t),t[

dN∗i+1(s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.
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Active and quiescent

The choice of 1x>0 as the rate function has the important
consequence that any given neuron can essentially be in only two
states at any given time.

I When Xi (t) = 0 (or equivalently when N∗i (t) has rate 0), we
say that neuron i is quiescent.

I When Xi (t) ≥ 1 (or equivalently when N∗i (t) has rate 1), we
say that neuron i is active.



Phase transition

Theorem (P. Ferrari et al.)

Suppose that for any i ∈ Z we have Xi (0) ≥ 1. There exists a
critical value γc for the parameter γ, with 0 < γc <∞, such that
for any i ∈ Z

P
(
N∗i ([0,∞[) <∞

)
= 1 if γ > γc ,

and

P
(
N∗i ([0,∞[) =∞

)
> 0 if γ < γc .



Result of Metastability

For some N ∈ Z+ we set IN = Z ∩ [−N,N], and we write(
XN
i (t)

)
t≥0 for the membrane potential of neuron i in the version

of the model defined on the finite set IN .

We define the extinction time of this model

σN = inf
{
t ≥ 0 : XN

i (t) = 0 for all i ∈ Z ∩ [−N,N]
}
.

Theorem (Metastability)
If γ < γc , then we have the following convergence

σN
E(σN)

L−→
N→∞

E (1).



The spiking rate process

We consider an important auxiliary process, namely the spiking
rates process. Denoted

(
ξ(t)

)
t≥0 and defined as follows

∀t ≥ 0, ∀i ∈ Z, ξi (t) = 1Xi (t)>0.

This process is an interacting particle system. It is a continuous
time Markov process taking value in {0, 1}Z. Each possible state is
a doubly infinite sequence of 0 and 1, indicating in which state
(quiescent or active) each neuron is.
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Result of Metastability

For some N ∈ Z+ we set IN = Z ∩ [−N,N], and we write(
ξN(t)

)
t≥0 for the spiking rate process restricted to the finite set

IN .

We define the extinction time of the spiking rate process

τN = inf
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σN
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Result of Metastability

For some N ∈ Z+ we set IN = Z ∩ [−N,N], and we write(
ξN(t)

)
t≥0 for the spiking rate process restricted to the finite set

IN .

We define the extinction time of the spiking rate process

τN = inf
{
t ≥ 0 : ξN(t)i = 0 for all i ∈ Z ∩ [−N,N]
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Theorem (Metastability)
If γ < γc , then we have the following convergence

τN
E(τN)

L−→
N→∞

E (1).



The infinitesimal generator

The generator of the process
(
ξ(t)

)
t≥0 is given by

L f (η) = γ
∑
i∈Z

(
f (π†i (η))− f (η)

)
+
∑
i∈Z

ηi

(
f (πi (η))− f (η)

)
,

where the maps are given by

π†i (η)j =

{
0 if j = i ,

ηj otherwise,

and

πi (η)j =


0 if j = i ,

max(ηi , ηj) if j ∈ {i − 1, i + 1},
ηj otherwise.



The graphical representation

We can give a graphical construction of the process. For any i ∈ N
let (Ni (t))t≥0 and (N†i (t))t≥0 be two independent homogeneous
Poisson processes with intensity 1 and γ respectively.

Let (Ti ,n)n≥0 and (T †i ,n)n≥0 be their respective jump times.

Consider the time-space diagram Z× R+, and do the following:

I Put a "δ" mark at the point (i ,T †i ,n),
I Put an arrow pointing from (i ,Ti ,n) to (i + 1,Ti ,n) and

another pointing from (i ,Ti ,n) to (i − 1,Ti ,n).



The graphical representation

We say that there is a valid path from (i , t) to (j , t ′) if there is a
chain of time segment and arrows leading from (i , t) to (j , t ′) such
that:

I it never cross a "δ" mark,
I when moving upward, we never cross the basis of an arrow.

Then the process (ξ(t))t≥0 can be defined as follows

ξA(t) = {j ∈ Z : (i , 0) −→ (j , t) for some i ∈ A}



The graphical representation

Figure: In blue all possible valid paths starting from (0, 0) up to time t.



The dual process

The process (ξ(t))t≥0 is additive in the sense that the maps satisfy
the following

πi (A) =
⋃
j∈A

πi ({j}) and π†i (A) =
⋃
j∈A

π†i ({j})

As a consequence it has a dual process, a pure jump Markov
process on Pf (Z) (finite subsets of Z) denoted (C (t))t≥0, which
generator is given by

L̃ g(F ) = γ
∑
i∈F

(
g(π̃†i (F ))− g(F )

)
+
∑
i∈F

ηi

(
g(π̃i (F ))− g(F )

)
,



The dual maps

For F ∈Pf (Z) the dual maps are given by

π̃†i (F ) = F \ {i}

and

π̃i (F ) =
⋃
j∈F

π̃i ({j})

where

π̃i ({j}) =


∅ if j = i ,

{i , j} if j ∈ {i − 1, i + 1},
{j} otherwise,



The graphical representation

We can give a graphical construction of the dual process as well.
Define Poisson processes (Ñi (t))t≥0 and (Ñ†i (t))t≥0 with the same
parameter as previously, and let (T̃i ,n)n≥0 and (T̃ †i ,n)n≥0 be their
respective jump times.

Consider the time-space diagram Z× R+ again, and do as for the
original process, but reversing the arrows.

A path is said to be dual-valid if it satisfies the following
constraints:

I it never cross a "δ" mark,
I when moving upward, we never cross the tip of an arrow.



The graphical representation of the dual process

Figure: In blue all possible dual-valid paths starting from (0, 0) up to
time t.



The duality relation

Then we can give an alternative characterization of the dual
process as we did for the original process. For any A ∈Pf (Z),

CA(t) = {j ∈ Z : (i , 0) dual−→ (j , t) for some i ∈ A}.

Proposition (Duality)
For any B ∈Pf (Z), A ∈P(Z), and t ≥ 0 we have

P
(
ξA(t) ∩ B 6= ∅

)
= P

(
CB(t) ∩ A 6= ∅

)
.



Set monotonicity and stochastic monotonicity

Proposition (Set monotonicity)
Let A ⊂ B ⊂ Z. Then for any t ≥ 0 we have

ξA(t) ⊂ ξB(t).

Proposition (Stochastic monotonicity)
For any 0 ≤ s < t we have the following

P (ξ(s) ∈ • ) ≥ P (ξ(t) ∈ • ) .



Upper-invariant and lower-invariant measures

Proposition
For any γ > 0 there exists a probability measures µγ which is
invariant for (ξ(t))t≥0 and that is such that

P
(
ξ(t) ∈ •

)
−→
t→∞

µγ .

The Dirac measure on the "all zero" state, denoted δ∅, is also
invariant and we have

P
(
ξ∅(t) ∈ •

)
−→
t→∞

δ∅.

Moreover if ν is any other invariant measure then δ∅ ≤ ν ≤ µγ .



Upper-invariant and lower-invariant measures for the dual

Proposition
For any γ > 0 there exists a probability measures µ̃γ which is
invariant for (C (t))t≥0 and that is such that

P
(
C (t) ∈ •

)
−→
t→∞

µ̃γ .

The Dirac measure on the "all zero" state, denoted δ∅, is also
invariant and we have

P
(
C ∅(t) ∈ •

)
−→
t→∞

δ∅.

Moreover if ν is any other invariant measure then δ∅ ≤ ν ≤ µ̃γ .



Upper-invariant measure in the sub-critical regime

Proposition
When γ < γc we have ργ > 0, and therefore µγ 6= δ∅.

Proposition
When γ < γc , we have µ̃ 6= δ∅.

Proposition
In the sub-critical regime we have µ (η ≡ 0) = 0 and µ̃ (η ≡ 0) = 0.



Space ergodicity of the Upper-invariant measure

Theorem
The measure µγ is spatially ergodic in the sense that a sequence of
random variable (Xk)k∈Z taking value in {0, 1} and such that Xk is
distributed like µγ

(
{η : ηk = • }

)
would satisfy the following

1
n + 1

n∑
k=0

Xk
a.s.−→

n→∞
ργ .



Super-Critical Metastability

One dimensional lattice with nearest neighbour
interaction and hard threshold

(work in progress)



Super-critical metastability

For γ > γc we conjecture that the following convergence holds:

τN
E(τN)

P−→
N→∞

1.

This follows immediately from the two following results (which
remain to be proven):

τN
log(N)

P−→
N→∞

C ,

and

E(τN)
log(N)

−→
N→∞

C .

Here C is a positive (and finite) constant.



Simulations

d-dimensional lattice with nearest neighbour
interaction and hard threshold



Interaction structure

We did the simulation for I = Z, I = Z2 and I = Z3. In each of
these cases the structure of the interaction is nearest-neighbors.

I In the two-dimensional case the set of presynaptic neurons for
neuron i = (i1, i2) is

V2
i = {j = (j1, j2) ∈ Z2 : |i1 − j1|+ |i2 − j2| = 1}.

I In the three-dimensional case the set of presynaptic neurons
for neuron i = (i1, i2, i3) is

V3
i = {j = (j1, j2, j3) ∈ Z3 : |i1 − j1|+ |i2 − j2|+ |i3 − j3| = 1}.



Interaction structure

Figure: Interaction structure in dimension 1 and 2.



Histograms of the extinction time

Figure: Sub-critical simulation for dimension 1, 2 and 3.

Figure: Super-critical simulation for dimension 1, 2 and 3.



Simulation for a varying number of neuron

Figure: Fixed (super-critical) γ in the one-dimensional case for a varying
number of neurons.



Open problems



Open problems

I In all developments we’ve evoked the rate function is chosen to
be a hard threshold (φi (x) = 1x>0 for all i ∈ I ). It makes the
model more manageable mathematically but less realistic
biologically. Could we prove the same results for a linear or a
sigmoïd rate function?

I In the same lines, the nearest-neighbours structure of the
interaction is mathematician-friendly (it allows us to use Harris
graphical structure), but could we prove the same results for
more complicated graphs (Erdős–Rényi for example)?



Simulation for Erdős–Rényi interaction graph

Figure: Simulation for Erdős–Rényi graph. The parameter of the
Erdős–Rényi graph was chosen to be critical, i.e. pN = 1

N .



THE END

Thanks!


