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What is Metastability (some quote)

“Metastability is the property of a state, seemingly stable,
but such that a tiny perturbation can push it toward an
even more stable state.

”
Wikipedia, Fr

The mathematician and physicist Bernard Derrida also used the
expression Dynamical phase transition.
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Some examples of metastable phenomenons
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Some examples of metastable phenomenons

We can find a wide variety of examples from different field in which
metastability arises:

I Physic: Supercooling water, avalanche, nuclear physics...

I Digital Electronics: Metastable bits.

I Mathematics: Catastrophe Theory in differential topology,
Dynamical systems, Stochastic processes...

I Economics: Game Theory, Finance.

I Philosophy: Sartre, Simondon...
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Metastability in the brain

Metastability has been increasingly discussed in neuroscience during the
last 20 years.

But often discussed in a loose sense, rarely from a mathematically
rigorous perspective.

Some references:

I ”Metastability, criticality and phase transitions in brain and its
models”, G. Werner (2007).

I ”The Metastable Brain”, E. Tognoli and J.A. Kelso (2014).

I ”Metastable Resting State Brain Dynamics”, P. Graben et al.
(2019).

...
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Metastability in the brain (some example?)

funahashi et al. 1989.
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Metastability in statistical mechanics

In 1984 Cassandro et al. introduced the following characterization in
statistical mechanics for a metastable dynamic :

1. There is an absorbing state, but the time it takes to reach this state
is exponentially distributed.

2. Before reaching this state the system behave like if it was described
by the invariant measure of an other, closely related system.

They applied this approach to the Curie-Weiss model and to the Contact
process.
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The Model
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The Model

I A countable set S representing the neurons.

I For each neuron i ∈ S , a set Vi ⊂ I of presynaptic neurons.

I For each i ∈ S , a process
(
Xi (t)

)
t≥0

taking value in N representing

the membrane potential of neuron i .

I For each i ∈ S , two point processes
(
N∗i (t)

)
t≥0

and
(
N†i (t)

)
t≥0

representing spiking times and total leak times respectively.

I For each i ∈ S , a spiking rate function φi on N.
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The Model

The point process
(
N†i (t)

)
t≥0

is a Poisson process of some rate γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0

has a fluctuating rate, given at time t by

φi
(
Xi (t)

)
.

The membrane potential at time t for neuron i is given by

Xi (t) =
∑
j∈Vi

∫
]Li (t),t[

dN∗j (s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.
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The (simplified) Model

For all i ∈ S , φi(x) = 1x>0.
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The (simplified) Model

We define our main object, denoted
(
ξ(t)

)
t≥0

, as follows

∀t ≥ 0, ∀i ∈ S , ξi (t)
def
= 1Xi (t)>0.

This process is an interacting particle system. It is a continuous time
Markov process taking value in {0, 1}S .

Depending on whether ξi (t) is equal to 1 or 0 we will say that neuron i is
active or quiescent respectively.
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One-dimensional lattice with nearest-neighbours interaction

Then we let
(
ξ(t)

)
t≥0

be the process be defined on the one-dimensional

lattice with nearest neighbours interaction, that is:

S = Z and Vi = {i − 1, i + 1} for all i ∈ S .

Let
(
ξN(t)

)
t≥0

be the finite version of this process, that is the process

defined on S = J−N,NK with

Vi =


{i − 1, i + 1} if i ∈ J−(N − 1),N − 1K,
{N − 1} if i = N,

{−(N − 1)} if i = −N.
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Z with nearest-neighbours interaction

Time t
0 0 1 0

Time t + dt

Spike at rate 1

0 1 0 1
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One-dimensional lattice with nearest-neighbours interaction

Time t
1 1 1 1

Time t + dt

Leakage at rate γ

1 0 1 1
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Simulations on the lattice for high γ.
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Simulations on the lattice for low γ.
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Result

M. André Metastability in Stochastic Systems of Spiking Neurons 19 / 28



Theorem

Define τN to be the time of extinction of
(
ξN(t)

)
t≥0

, that is:

τN
def
= inf{t ≥ 0 : ξN(t)i = 0 for any i ∈ J−N,NK}.

Theorem

There exists γc such that if 0 < γ < γc , then

τN
E(τN)

D−→
N→∞

E(1).
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Proof for γ small

Proof.
Let βN be the unique value in R+ such that

P (τN > βN) = e−1.

I First we show

lim
N→∞

∣∣∣∣P( τNβN > s + t

)
− P

(
τN
βN

> s

)
P
(
τN
βN

> t

)∣∣∣∣ = 0,

I from what we get

τN
βN

D−→
N→∞

E(1),

I and we conclude with
E (τN) ∼

N∞
βN .
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M. André Metastability in Stochastic Systems of Spiking Neurons 21 / 28



Proof of the first step

∣∣∣∣P( τNβN > s + t

)
− P

(
τN
βN

> s

)
P
(
τN
βN

> t

)∣∣∣∣
≤ · · ·

≤ max
A⊆{−N,...N}

A∈F

P
(
τN 6= τAN

)
+ P

(
τN
βN

> s, ξN(βNs) 6∈ F

)
.

Where F ⊂ P (Z) is some wisely chosen class of subsets of Z.
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How to choose F?

We can prove that the infinite processes has nice properties. First it
converges in the sense that there exists a measure µ such that

P
(
ξ(t) ∈ •

)
−→
t→∞

µ.

We can therefore define the asymptotical density of the infinite process:

ρ
def
= µ ({ξ : ξ0 = 1}) .

Then we can show the following.

I Phase transition: ρ > 0 for γ small.

I Spatially ergodicity: if Xk is distributed like µ
(
{ξ : ξk = • }

)
then

1

n + 1

n∑
k=0

Xk
a.s.−→

n→∞
ρ.
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M. André Metastability in Stochastic Systems of Spiking Neurons 23 / 28



How to choose F?

We can prove that the infinite processes has nice properties. First it
converges in the sense that there exists a measure µ such that

P
(
ξ(t) ∈ •

)
−→
t→∞

µ.

We can therefore define the asymptotical density of the infinite process:

ρ
def
= µ ({ξ : ξ0 = 1}) .

Then we can show the following.

I Phase transition: ρ > 0 for γ small.

I Spatially ergodicity: if Xk is distributed like µ
(
{ξ : ξk = • }

)
then

1

n + 1

n∑
k=0

Xk
a.s.−→

n→∞
ρ.
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max
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M. André Metastability in Stochastic Systems of Spiking Neurons 24 / 28



How to choose F?

max
A⊆{−N,...N}

A∈Fb

P
(
τN 6= τAN

)
+ P (ξ(βNs) 6∈ Fb) + o(1)

Where for any b > 0

Fb
def
=

{
A ∈ P (Z) :

|A ∩ [−b, 0]|
b + 1

>
ρ

2
,
|A ∩ [0, b]|

b + 1
>
ρ

2

}
.

I Phase transition: ρ > 0 for γ small.

I Spatially ergodicity: if Xk is distributed like µ
(
{ξ : ξk = • }

)
then

1

n + 1

n∑
k=0

Xk
a.s.−→

n→∞
ρ.
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Other results and perspectives

I For the model on the lattice you can also prove that for γ > 1 the
following holds

τN
E(τN)

P−→
N→∞

1.

I The result of convergence toward the exponential law was also
proven for the model with complete interaction, for any γ > 0.

I Similar results has been obtained numerically for a model with
synaptic plasticity (and complete interaction).
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M. André Metastability in Stochastic Systems of Spiking Neurons 26 / 28



Other results and perspectives

An other question is how to formalize the second point in the
characterization of metastability.

A possibility in the case of the lattice is to consider the temporal means
and to show that for any suitable function f : {0, 1}Z → R, and for big R
and N the following holds

1

R

∫ t+R

t

f (ξN(s)) ds ≈ µ(f )

Problem: this approach isn’t suitable for graphs such as the complete
graph.
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Thank you for your attention!


