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Description of the model

The model we are interested in is composed of:

> A countable set | representing the neurons.

» For each neuron i € I, a set V; C | of presynaptic neurons.

> For each i € /, two point processes (N (t)),, and
(NI-T(t“))t>0 representing spiking times and total leak times
respectively.

> For each i € /, a real-valued process (X;(t)),s, representing
the membrane potential of neuron |.



Spiking times, leaking times and membrane potential

The point process (N,T(t)) +>p IS a Poisson process of some rate
v >0. -

The point process (N7 (t))
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(¢i)icr is a collection of rate functions.



One dimensional lattice with
nearest neighbour interaction

and hard threshold



Spiking times, leaking times and membrane potential

The point process (N,T(t)) is a Poisson process of some rate

v >0.

t>0
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Spiking times, leaking times and membrane potential

The point process (N,T(t))
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>0 is a Poisson process of some rate

The point process (N,*(t)) is characterized by the property that
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Xi(t) = / dN? 4 (s) + / dN?. 1 (5),
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and L;(t) = sup {s <t:N:({s})+ N,T({s}) = 1}.



Phase transition

Theorem 1 (P. Ferrari et al.)

Suppose that for any i € 7 we have X;(0) > 1. There exists a

critical value 7. for the parameter ~, with 0 < ~. < 0o, such that
forany i € Z

P(N;(10,00]) <o) =1 ify>1e,

and

]P’(N;*([O,oo[) - oo) >0 ify < e



Result of Metastability

For some N € Z* we set Iy = Z N [N, N], and we write
(X/V(t)) ;5 for the membrane potential of neuron i in the version
of the model defined on the finite set /.

We define the extinction time of this model

™ = inf{t >0:XN(t)=0forallic ZN[-N, N]}

Theorem 2 (M. André)

If v < 7¢, then we have the following convergence

TN <
() woe & -




Active and quiescent

The choice of 1,~¢ as the rate function has the important
consequence that any given neuron can essentially be in only two
states at any given time.

» When X;(t) = 0 (or equivalently when N(t) has rate 0), we
say that neuron / is quiescent.

» When X;(t) > 1 (or equivalently when N(t) has rate 1), we
say that neuron / is active.



The spiking rate process

We consider an important auxiliary process, namely the spiking
rates process. Denoted (§(t))t>0 and defined as follows

Vt>0, VieZ, &(t)= Ix.(t)>0-

This process is an interacting particle system. It is a continuous
time Markov process taking value in {0,1}%. Each possible state is
a doubly infinite sequence of 0 and 1, indicating in which state
(quiescent or active) each neuron is.



The infinitesimal generator

The generator of the process (£(t)),., is given by

260 =5 (F(el ) = £)) + > mi (Fmiln) = £(m)).

ez i€z
where the maps are given by
0 ifj=1i
() = .
n; otherwise,
and
0 if j =1,
mi(n); = < max(n;,m;) ifje{i—1,i+1},
nj otherwise.



What we want to prove

Theorem 3
Suppose that v > ~.. Then the following convergence holds
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What we want to prove

Theorem 4
Suppose that v > 1. Then the following convergence holds

TN P
— 1.
E(TN) N—o0



How we prove it

Proposition 5
Suppose that v > 1. Then there exists a constant 0 < C < c©
depending on ~y such that the following convergence holds

N P
— — C
log(2N + 1) N—co

Proposition 6
Suppose that v > 1. Then the following convergence holds

E (n)
log(2N + 1) N

)

where C is the same constant as in the previous proposition.



Proof of Proposition 5

Notice that we have the following

P((t+s)#0]&(t)#0) =P (L (s) #0).

Which can be rewritten

P(O(t+5) #0) 2P (°(t) #0) P (%) #0).

Writing f(t) = log (IP’ (€0(t) # 0) > the previous line implies that
f is superadditive. Therefore, by a well-known result (Fekete
lemma), we have

f(tt)—>—C’, (1)

t—00

where C' = —sup,. @



Proof of Proposition 5

Notice that we also have for any t > 0
P (E0(t) #0) < e .

It is crucial to ensure that 0 < C' < co. The C' < oo part is
immediate from the inequality above but the inequality C' > 0
requires a little bit of work.



Proof of Proposition 5

Let (Z¢)¢>0 denote a continuous time branching process with birth
rate 1 and death rate 7.

We can realize a coupling between (Z;)¢>0 and our process
(€°(t))e>0 in such a way that [£0]| < Z; for any t > 0.

Then it follows that

P(O(t) #0) <P(Z > 1) <E(Z) =e (DL

This last inequality implies that C' > v — 1, so that C' >0
whenever v > 1.



Proof of Proposition 5

We're aimed to prove that for any € > 0 the following holds

TN 1
¥ (Iog(2N Ty o 6) e (3)

and

TN 1
S B . 4
F (Iog(ZN I A 6) e )



Proof of Proposition 5 : equation (3)

Let's do the easy part! We have

B(Sn(t) £ 0) < (2N + 1P (£2(t) £ 0) < 2N +1)e T (5)

Now take t = (% + €)log(2N + 1) and you get

N S crtoganen
P('Og(2N+1) c' >€> = P(¢n(t) #£0) < e €8 _

It goes to 0 when N diverges as C' > 0.



Proof of Proposition 5 (equation 4)

Now the not so easy part. For some constant K to be fixed later
and for any k € Z, we define:

Fe = {(2k —1)Klog(2N +1),...,(2k + 1)K log(2N + 1)}.

We also define the set of integers

N N
2K log(2N + 1)’ 2K log(2N + 1) |’

In=7nN

and the following configuration

An = {2kK log(2N + 1) for k € Iy} .



Proof of Proposition 5 (equation 4)

We then consider a modification of the process ({n(t))t>0 where
all neurons at the border of one of the sub-windows F; defined
above are fixed in quiescent state. This modified process is denoted

(Cn(t))eo0-
For any fixed time t > 0, we define the following event

E: = {(ﬁg)ogsgt stays inside {—K log(2N+1),..., KIog(2N+1)}}.



Proof of Proposition 5 (equation 4)

Now for N big enough and for any t > 0 we have

2N+1)/(2K log(2N+1
(2N+1)/(2K log(2N+1))

g
P
( (€Yt =0NE)+ IP(EC))
<(

(60( ) @) -+ P (EC) ) (2N+1)/(2K |Og(2N+1))
t .



Proof of Proposition 5 (equation 4)

Now it only remains to find a suitable bound for P (¢°(t) = @) and
for P(Ef).

For P (§O(t) = @), we take write € = C’¢, and notice that

f(t . . .
¥ > —(1+ €')C for big enough t, which can be written

P(E9 =) <1 e (HCE

Now take t = (& —€) log(2N + 1) = & (1 — ) log(2N + 1), to
get

P=0)<1-



Proof of Proposition 5 (equation 4)

For P (Ef), we denote r; = max£2 and we let (M(t))s>0 be an
homogeneous Poisson process of parameter 1. We have for any
m>0

P (sup re> m> < P(M(t) > m).

s<t
Moreover E (eM(t)) = et(e=1) 5o by Markov inequality

’
et(e—l—K )

IN

P <sup rs > K’t)
s<t

et(2—K’)

IN

)



Proof of Proposition 5 (equation 4)

Now taking again t = & (1 — ¢) log(2N + 1) and K’ = 2(1 + C’)
we get

P (sup re > m> < e A1) log(2N+1)
s<t B -

and assuming without loss of generality that ¢ < 5 we get

1
P > < . 7
(2 m) = o Y



Proof of Proposition 5 (equation 4)

It is now possible to fix the value of the constant K:

K/
K =inf {x € R such that x > Yl and xlog(2N + 1) € N} .

With these bounds in mind we get

P(én(t) =0)
< (P(() = 0) +P(£F) )

1 9 (2N+1)/(2K log(2N+1))
<|1- — .
- < <(2N—i—1)1_5’2 2N+1>>

And this is easily proven to go to 0 when N goes to co.

(2N-+1)/(2K log(2N+1))




Proof of Proposition 6

It remains to prove that for v > 1 we also have

E (7w)
— — C.
log(2N + 1) N—oo

It is well-known that the fact that a sequence of random variables
(Xn)nen converges in probability to some random variable X
doesn’t necessarily implies that E(X,) e E(X).

— 00

Nonetheless this implication holds true with the additional
assumption that the sequence is uniformly integrable, i.e. if

lim (supE(|X,|1 =0.
(n@g (\ \{x,,|>/v/})>

M— o0



Proof of Proposition 6

We have the following

N
E(—™ g
(Iog(2N+ 1) {log(2%+1)>M}>

[e.@] TN
= Pl —— > t,M) ) dt,
/0 (Iog(2N +1) max( )>

which leads to

N 1-C'M
El\ —5nh <3 M
nseuI\FI)* <|og(2N—|— 1) {Iog2N+1>M}> = [ +

C'log(3)



THE END

Thanks!



