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Description of the model

The model we are interested in is composed of:
I A countable set I representing the neurons.
I For each neuron i ∈ I , a set Vi ⊂ I of presynaptic neurons.
I For each i ∈ I , two point processes

(
N∗i (t)

)
t≥0 and(

N†i (t)
)
t≥0 representing spiking times and total leak times

respectively.
I For each i ∈ I , a real-valued process

(
Xi (t)

)
t≥0 representing

the membrane potential of neuron i .



Spiking times, leaking times and membrane potential

The point process
(
N†i (t)

)
t≥0 is a Poisson process of some rate

γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0 is characterized by the property that

for any s ≤ t

E
(
N∗i (t)− N∗i (s)|Fs

)
=

∫ t

s
E
(
φi (Xi (u))|Fs

)
du,

Where
Xi (t) =

∑
j∈Vi

∫
]Li (t),t[

dN∗j (s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.

(φi )i∈I is a collection of rate functions.



One dimensional lattice with
nearest neighbour interaction
and hard threshold



Spiking times, leaking times and membrane potential

The point process
(
N†i (t)

)
t≥0 is a Poisson process of some rate

γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0 is characterized by the property that

for any s ≤ t

E
(
N∗i (t)− N∗i (s)|Fs

)
=

∫ t

s
E
(
1Xi (u)>0 |Fs

)
du,

Where
Xi (t) =

∑
j∈Vi

∫
]Li (t),t[

dN∗j (s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.
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Spiking times, leaking times and membrane potential

The point process
(
N†i (t)

)
t≥0 is a Poisson process of some rate

γ ≥ 0.

The point process
(
N∗i (t)

)
t≥0 is characterized by the property that

for any s ≤ t

E
(
N∗i (t)− N∗i (s)|Fs

)
=

∫ t

s
E
(
1Xi (u)>0|Fs

)
du,

Where

Xi (t) =

∫
]Li (t),t[

dN∗i−1(s) +

∫
]Li (t),t[

dN∗i+1(s),

and Li (t) = sup
{
s ≤ t : N∗i ({s}) + N†i ({s}) = 1

}
.
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Phase transition

Theorem 1 (P. Ferrari et al.)

Suppose that for any i ∈ Z we have Xi (0) ≥ 1. There exists a
critical value γc for the parameter γ, with 0 < γc <∞, such that
for any i ∈ Z

P
(
N∗i ([0,∞[) <∞

)
= 1 if γ > γc ,

and

P
(
N∗i ([0,∞[) =∞

)
> 0 if γ < γc .



Result of Metastability

For some N ∈ Z+ we set IN = Z ∩ [−N,N], and we write(
XN
i (t)

)
t≥0 for the membrane potential of neuron i in the version

of the model defined on the finite set IN .

We define the extinction time of this model

τN = inf
{
t ≥ 0 : XN

i (t) = 0 for all i ∈ Z ∩ [−N,N]
}
.

Theorem 2 (M. André)
If γ < γc , then we have the following convergence

τN
E(τN)

L−→
N→∞

E (1).



Active and quiescent

The choice of 1x>0 as the rate function has the important
consequence that any given neuron can essentially be in only two
states at any given time.

I When Xi (t) = 0 (or equivalently when N∗i (t) has rate 0), we
say that neuron i is quiescent.

I When Xi (t) ≥ 1 (or equivalently when N∗i (t) has rate 1), we
say that neuron i is active.



The spiking rate process

We consider an important auxiliary process, namely the spiking
rates process. Denoted

(
ξ(t)

)
t≥0 and defined as follows

∀t ≥ 0, ∀i ∈ Z, ξi (t) = 1Xi (t)>0.

This process is an interacting particle system. It is a continuous
time Markov process taking value in {0, 1}Z. Each possible state is
a doubly infinite sequence of 0 and 1, indicating in which state
(quiescent or active) each neuron is.



The infinitesimal generator

The generator of the process
(
ξ(t)

)
t≥0 is given by

L f (η) = γ
∑
i∈Z

(
f (π†i (η))− f (η)

)
+
∑
i∈Z

ηi

(
f (πi (η))− f (η)

)
,

where the maps are given by

π†i (η)j =

{
0 if j = i ,

ηj otherwise,

and

πi (η)j =


0 if j = i ,

max(ηi , ηj) if j ∈ {i − 1, i + 1},
ηj otherwise.



What we want to prove

Theorem 3
Suppose that γ > γc . Then the following convergence holds

τN
E(τN)

P−→
N→∞

1.



What we want to prove

Theorem 4
Suppose that γ > 1. Then the following convergence holds

τN
E(τN)

P−→
N→∞

1.



How we prove it

Proposition 5
Suppose that γ > 1. Then there exists a constant 0 < C <∞
depending on γ such that the following convergence holds

τN
log(2N + 1)

P−→
N→∞

C .

Proposition 6
Suppose that γ > 1. Then the following convergence holds

E (τN)

log(2N + 1)
−→
N→∞

C ,

where C is the same constant as in the previous proposition.



Proof of Proposition 5

Notice that we have the following

P
(
ξ0(t + s) 6= ∅ | ξ0(t) 6= ∅

)
≥ P

(
ξ0(s) 6= ∅

)
.

Which can be rewritten

P
(
ξ0(t + s) 6= ∅

)
≥ P

(
ξ0(t) 6= ∅

)
P
(
ξ0(s) 6= ∅

)
.

Writing f (t) = log
(
P
(
ξ0(t) 6= ∅

) )
, the previous line implies that

f is superadditive. Therefore, by a well-known result (Fekete
lemma), we have

f (t)

t
−→
t→∞

− C ′, (1)

where C ′ = − sups>0
f (s)
s .



Proof of Proposition 5

Notice that we also have for any t > 0

P
(
ξ0(t) 6= ∅

)
≤ e−C

′t . (2)

It is crucial to ensure that 0 < C ′ <∞. The C ′ <∞ part is
immediate from the inequality above but the inequality C ′ > 0
requires a little bit of work.



Proof of Proposition 5

Let (Zt)t≥0 denote a continuous time branching process with birth
rate 1 and death rate γ.

We can realize a coupling between (Zt)t≥0 and our process
(ξ0(t))t≥0 in such a way that |ξ0t | ≤ Zt for any t ≥ 0.

Then it follows that

P
(
ξ0(t) 6= ∅

)
≤ P (Zt ≥ 1) ≤ E(Zt) = e−(γ−1)t .

This last inequality implies that C ′ ≥ γ − 1, so that C ′ > 0
whenever γ > 1.



Proof of Proposition 5

We’re aimed to prove that for any ε > 0 the following holds

P
(

τN
log(2N + 1)

− 1
C ′

> ε

)
−→
N→∞

0, (3)

and

P
(

τN
log(2N + 1)

− 1
C ′

< −ε
)
−→
N→∞

0. (4)



Proof of Proposition 5 : equation (3)

Let’s do the easy part! We have

P (ξN(t) 6= ∅) ≤ (2N + 1)P
(
ξ0(t) 6= ∅

)
≤ (2N + 1)e−C

′t . (5)

Now take t = ( 1
C ′ + ε) log(2N + 1) and you get

P
(

τN
log(2N + 1)

− 1
C ′

> ε

)
= P (ξN(t) 6= ∅) ≤ e−C

′ε log(2N+1).

It goes to 0 when N diverges as C ′ > 0.



Proof of Proposition 5 (equation 4)

Now the not so easy part. For some constant K to be fixed later
and for any k ∈ Z, we define:

Fk =
{
(2k − 1)K log(2N + 1), . . . , (2k + 1)K log(2N + 1)

}
.

We also define the set of integers

IN = Z ∩
[
− N

2K log(2N + 1)
,

N

2K log(2N + 1)

]
,

and the following configuration

AN = {2kK log(2N + 1) for k ∈ IN} .



Proof of Proposition 5 (equation 4)

We then consider a modification of the process (ξN(t))t≥0 where
all neurons at the border of one of the sub-windows Fk defined
above are fixed in quiescent state. This modified process is denoted
(ζN(t))t≥0.

For any fixed time t > 0, we define the following event

Et =
{
(ξ0s )0≤s≤t stays inside {−K log(2N+1), . . . ,K log(2N+1)}

}
.



Proof of Proposition 5 (equation 4)

Now for N big enough and for any t > 0 we have

P (ξN(t) = ∅)

≤ P
(
ζAN
N (t) = ∅

)
= P

(
ζ0
N(t) = ∅

)(2N+1)/(2K log(2N+1))

≤
(
P
(
ζ0
N(t) = ∅ ∩ Et

)
+ P (E c

t )
)(2N+1)/(2K log(2N+1))

≤
(
P
(
ξ0(t) = ∅

)
+ P (E c

t )
)(2N+1)/(2K log(2N+1))

.



Proof of Proposition 5 (equation 4)

Now it only remains to find a suitable bound for P
(
ξ0(t) = ∅

)
and

for P (E c
t ).

For P
(
ξ0(t) = ∅

)
, we take write ε′ = C ′ε, and notice that

f (t)
t ≥ −(1+ ε′)C for big enough t, which can be written

P
(
ξ0t = ∅

)
≤ 1− e−(1+ε

′)C ′t .

Now take t =
( 1
C ′ − ε

)
log(2N + 1) = 1

C ′ (1− ε
′) log(2N + 1), to

get

P
(
ξ0t = ∅

)
≤ 1− 1

(2N + 1)1−ε′2
. (6)



Proof of Proposition 5 (equation 4)

For P (E c
t ), we denote rt = max ξ0t and we let (M(t))t≥0 be an

homogeneous Poisson process of parameter 1. We have for any
m ≥ 0

P
(
sup
s≤t

rs ≥ m

)
≤ P

(
M(t) ≥ m

)
.

Moreover E
(
eM(t)

)
= et(e−1), so by Markov inequality

P
(
sup
s≤t

rs ≥ K ′t

)
≤ et(e−1−K ′)

≤ et(2−K
′),



Proof of Proposition 5 (equation 4)

Now taking again t = 1
C ′ (1− ε

′) log(2N + 1) and K ′ = 2(1+ C ′)
we get

P
(
sup
s≤t

rs ≥ m

)
≤ e−2(1−ε′) log(2N+1),

and assuming without loss of generality that ε′ < 1
2 we get

P
(
sup
s≤t

rs ≥ m

)
≤ 1

2N + 1
. (7)



Proof of Proposition 5 (equation 4)

It is now possible to fix the value of the constant K :

K = inf

{
x ∈ R such that x ≥ K ′

C ′
and x log(2N + 1) ∈ N

}
.

With these bounds in mind we get

P (ξN(t) = ∅)

≤
(
P
(
ξ0(t) = ∅

)
+ P (E c

t )
)(2N+1)/(2K log(2N+1))

≤
(
1−

(
1

(2N + 1)1−ε′2
− 2

2N + 1

))(2N+1)/(2K log(2N+1))

.

And this is easily proven to go to 0 when N goes to ∞.



Proof of Proposition 6

It remains to prove that for γ > 1 we also have

E (τN)

log(2N + 1)
−→
N→∞

C .

It is well-known that the fact that a sequence of random variables
(Xn)n∈N converges in probability to some random variable X
doesn’t necessarily implies that E(Xn) −→

N→∞
E(X ).

Nonetheless this implication holds true with the additional
assumption that the sequence is uniformly integrable, i.e. if

lim
M→∞

(
sup
n∈N

E
(
|Xn|1{|Xn|>M}

))
= 0.



Proof of Proposition 6

We have the following

E
(

τN
log(2N + 1)

1{ τN
log(2N+1)>M}

)
=

∫ ∞
0

P
(

τN
log(2N + 1)

> max(t,M)

)
dt,

which leads to

sup
n∈N∗

E
(

τN
log(2N + 1)

1{ τN
log(2N+1)>M}

)
≤ 31−C ′M

[
M +

1
C ′ log(3)

]
.



THE END

Thanks!


